
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023 103

RCC: Enabling Receiver-Driven RDMA Congestion
Control With Congestion Divide-and-Conquer

in Datacenter Networks
Jiao Zhang , Senior Member, IEEE, Xiaolong Zhong , Graduate Student Member, IEEE,

Zirui Wan, Yu Tian, Tian Pan , Senior Member, IEEE, and Tao Huang , Senior Member, IEEE

Abstract— The development of datacenter applications leads
to the need for end-to-end communication with microsecond
latency. As a result, RDMA is becoming prevalent in datacenter
networks to mitigate the latency caused by the slow processing
speed of the traditional software network stack. However, existing
RDMA congestion control mechanisms are either far from
optimal in simultaneously achieving high throughput and low
latency or in need of additional in-network function support.
In this paper, by leveraging the observation that most congestion
occurs at the last hop in datacenter networks, we propose
RCC, a receiver-driven rapid congestion control mechanism
for RDMA networks that combines explicit assignment and
iterative window adjustment. Firstly, we propose a network
congestion distinguish method to classify congestions into two
types, last-hop congestion and in-network congestion. Then,
an Explicit Window Assignment mechanism is proposed to solve
the last-hop congestion, which enables senders to converge to
a proper sending rate in one-RTT. For in-network congestion,
a PID-based iterative delay-based window adjustment scheme
is proposed to achieve fast convergence and near-zero queuing
latency. RCC does not need additional in-network support and
is friendly to hardware implementation. In our evaluation,
the overall average FCT (Flow Completion Time) of RCC is
4∼79% better than Homa, ExpressPass, DCQCN, TIMELY,
and HPCC.

Index Terms— Datacenter, RDMA, congestion control,
receiver-driven, PI controller.

Manuscript received 22 December 2021; revised 15 May 2022;
accepted 18 June 2022; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor K. Chen. Date of publication 8 July 2022; date of current
version 16 February 2023. This work was supported in part by the National
Natural Science Foundation of China (NSFC) under Grant 61872401 and
Grant 62132022 and in part by the Fok Ying Tung Education Foundation
under Grant 171059. This paper is an extended version of the work that
first appeared with title “Receiver-Driven RDMA Congestion Control by
Differentiating Congestion Types in Datacenter Networks” at IEEE ICNP
2021 [DOI: 10.1109/ICNP52444.2021.9651938]. (Corresponding author:
Tao Huang.)

Jiao Zhang, Tian Pan, and Tao Huang are with the State Key Labora-
tory of Networking and Switching Technology, Beijing University of Posts
and Telecommunications, Beijing 100876, China, and also with the Purple
Mountain Laboratories, Nanjing 211111, China (e-mail: jiaozhang@bupt.
edu.cn; pan@bupt.edu.cn; htao@bupt.edu.cn).

Xiaolong Zhong and Zirui Wan are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: xlzhong@bupt.edu.cn;
wanzr@bupt.edu.cn).

Yu Tian is with the School of Science, Beijing University of
Posts and Telecommunications, Beijing 100876, China (e-mail:
tianyu2992@bupt.edu.cn).

Digital Object Identifier 10.1109/TNET.2022.3185105

I. INTRODUCTION

DATACENTERS are increasingly dominating the market
for different types of high-end computing and distributed

data storage services [2], [3]. These workloads put enor-
mous pressure on datacenter networks to deliver ever faster
throughput and extremely low latency at a low cost. More
specifically, with the tendency of deploying high I/O speed
storage media in datacenters, such as NVMe (Non-Volatile
Memory express), the storage speed and access latency are
significantly improved [3]. Therefore, datacenters become a
good fit for applications with great demand for computation
and storage capacity. However, to take full advantage of the
distributed and high-speed computation and storage resources
in datacenters, the networking stack requires to guarantee high
throughput and microsecond latency communications among
distributed nodes. Otherwise, the communication latency will
become the bottleneck of the applications [4], [5].

Unfortunately, the traditional TCP/IP network stack incurs
a lot of overhead [6]. CPU spends much time managing
data transfers for write-intensive workloads, reducing the
overall performance of these tasks. To solve this issue, the
RDMA (Remote Direct Memory Access) technique is becom-
ing widely used in datacenter networks [4]–[6]. The direct
connection of RDMA NICs reduces the involvement of the
CPU during data transmission. Meanwhile, combined with fast
storage like NVMe, the RDMA can cut end-to-end communi-
cation latencies down from milliseconds to microseconds.

However, deploying RDMA in datacenters poses great chal-
lenges on datacenter networking. Limited by the hardware
resources in NICs, current RDMA congestion control relies
on a simple go-back-N method to recover lost packets. Once
the loss rate becomes higher, the performance of RDMA
connections will dramatically deteriorate. Thus, PFC (Priority
Flow Control) is used to guarantee in-network losslessness.
However, PFC potentially brings fatal problems like PFC
deadlock and PFC pause frame storm [6], [7]. Therefore,
much attempt has been conducted to design RDMA-dedicated
congestion control mechanisms to avoid packet dropping.

The goal of congestion control mechanisms is to allocate the
bandwidth of congested links efficiently. The key challenge
lies in that end-hosts can not obtain accurate information
on network conditions easily. Most of the existing RDMA

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

104 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

congestion control mechanisms use various metrics, such as
ECN mark and RTT, to detect network conditions at the sender
side [5], [8], [9]. Then iterative window adjustment schemes
are proposed to solve network congestion. HPCC [4] suggests
using INT (In-band Network Telemetry) to obtain accurate
information on network conditions and then precisely controls
the congestion window at the sender side to achieve faster
convergence and lower latency. It can not be deployed if INT
support is absent.

In this paper, we instead ask, is it essential to accu-
rately measure in-network information for congestion con-
trol mechanisms in all cases? Most congestion happens at
the last hop due to the many-to-one traffic pattern in dat-
acenter networks, even in over-subscribed datacenter net-
works [10]–[13]. We call this kind of congestion last-hop
congestion. The other congestion, which happens at other
places, is referred to as in-network congestion. A study of
Google’s production datacenters reveals that the predominant
source of congestion, accounting for 62.8%, comes from the
last hop in datacenter networks [13]. Fortunately, receivers can
easily obtain the last-hop congestion information. Therefore,
there is potential for designing a simple and efficient mecha-
nism to solve the major last-hop congestion without obtaining
in-network congestion information, while the remaining small
part of in-network congestion can be further addressed by
another more complicated scheme.

Enlightened by the above investigation, we propose a novel
RDMA congestion control mechanism, RCC, that combines
explicit assignment and iterative window adjustment at the
receiver side. Firstly, we propose a network congestion dif-
ferentiation method to detect whether the last-hop congestion
happens. Inspired by the fast recovery mechanism in TCP,
we use n consecutive measured RTT values to infer whether
network congestion occurs or not. Then the last-hop average
throughput is used to further distinguish whether last-hop
congestion happens. For last-hop congestion, we propose an
Explicit Window Assignment scheme to adjust the sending
rate according to the connection number perceived at the
receiver side and piggyback the sending window through ACK
packets to senders. Besides, we combine per-ACK window
adjustment and packet pacing to avoid instantaneous large
queuing caused by Incast flows. In this way, the last-hop
congestion that takes the majority of network congestion in
datacenters can be solved in one RTT. For in-network con-
gestion, we design a new iterative window adjustment scheme
based on the PID (Proportional Integral Derivative) control
theory. By combining the proportional and derivative terms,
RCC can converge to a unique fixed point and achieve high
utilization with near-zero queuing latency. Besides, RCC sets
the upper bound of sending rate through the Explicit Window
Assignment mechanism for each flow. In this way, RCC can
avoid overlarge PID-based iterative window adjustment
results.

The main advantages of RCC include: 1) it can achieve
high throughput, near-zero queuing latency, fast convergence,
and fairness simultaneously, 2) it does not need additional
in-network features and thus can be readily deployed with
traditional commodity switches, 3) it requires only a small

amount of extra memory for each RDMA connection, which
makes it friendly to hardware implementation.

We analyze the stability and convergence of RCC based on a
mathematical model and the PID control theory. Then we use a
simulation-based phase margin and loop bandwidth analysis to
show how to configure parameters in RCC to ensure stability
and convergence.

Furthermore, we evaluate the performance of RCC
both in testbed and NS3 simulator [14] by conducting
micro-benchmark experiments as well as large-scale simula-
tions using realistic workloads from Google and Facebook
datacenters. We show RCC outperforms Homa, ExpressPass,
DCQCN, TIMELY, and HPCC in terms of mean and tail
flow completion time, convergence rate, fairness, and queuing
latency. Large-scale simulations show that RCC achieves 55%
lower average FCT and 79% lower 99th percentile FCT than
TIMELY and DCQCN for typical datacenter topology and
workload settings. Compared with HPCC, RCC is fairer and
achieves better performance in multiple scenarios.

In summary, our key contributions are:
• We leverage the characteristic that most congestion hap-

pens at the last hop to design RCC, a high-performance
transport for RDMA in datacenter networks;

• We propose an Explicit Window Adjustment mecha-
nism to fairly assign the last-hop bandwidth to senders
in one-RTT for last-hop congestion. And we design a
PID-based window adjustment mechanism to simulta-
neously achieve fairness and a guaranteed steady-state
latency for in-network congestion. Besides, per-ACK
window adjustment and packet pacing are combined to
mitigate instantaneous large queuing latency;

• We theoretically analyze RCC on its stability and conver-
gence and show how to tune parameters of RCC under
various network conditions;

• We evaluate RCC with both DPDK implementation and
large-scale simulations in comparison with state-of-the-
art RDMA and receiver-driven schemes. Results show
that RCC achieves 4 ∼ 79% lower overall average FCT
than Homa, ExpressPass, DCQCN, TIMELY, and HPCC.

II. BACKGROUND AND MOTIVATION

A. RDMA in Ethernet

Traditional TCP suffers from high CPU overhead and large
latency [15]. By offloading the transport layer function to the
hardware chip, RDMA is able to access (i.e., read from or
write to) memory on a remote machine without interrupting
the processing of the CPU(s) on that system. RDMA was pre-
viously used in lossless InfiniBand networks. To use RDMA
in Ethernet and IP networks, RoCE [16] is proposed. RoCE
follows the original design of RDMA for lossless networks,
using PFC [17] to avoid packet loss in Ethernet and using a
go-back retransmission mechanism to recover lost packets.

PFC is a hop-by-hop flow control mechanism to prevent
buffer overflow on Ethernet switches and end-host NICs.
It works in the queue granularity and sends PAUSE/RESUME
frames from downstream devices to notify upstream devices
to pause/resume sending packets. Because of a coarse-grained

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 105

Fig. 1. Performance of DCQCN and TIMELY in a multi-bottleneck topology.
Flow 1, 2, 3 starts at 0, 100, 200 ms, respectively.

queue-level operation, PFC possibly leads to poor performance
for individual flows, such as unfairness, flow transmission
and head-of-line blocking. Even worse, unexpected interaction
between PFC and Ethernet packets flooding possibly breaks
the up-down routing and could lead to occasional deadlocks.
Go-Back Retransmission. The original design of RDMA in
Ethernet employs go-back-0 retransmission to handle occa-
sional packet drops, which suffers from the live-lock problem.
To address this issue, a modified go-back-N retransmission is
employed. Go-back-N scheme solves the live-lock problem but
still wastes time and bandwidth for sending redundant packets,
potentially increasing the probability of congestion.

B. Defects of State-of-the-Art Congestion Control Solutions

In order to reduce the side effects of the above go-back
mechanisms, flow-based RDMA congestion control solutions
like DCQCN, TIMELY and HPCC, have been proposed.
DCQCN is an end-to-end rate-based congestion control mech-
anism [5] proposed for RoCEv2. It achieves high link utiliza-
tion by fast rate increase similar to QCN and fairness through
DCTCP-like fine-grained rate control [18].
TIMELY is an RTT-based and rate-based RDMA congestion
control mechanism [9], which iteratively adjusts the sending
rate based on the RTT gradients.
HPCC [4] leverages precise link load information carried by
INT probes supported by switches to calculate the appropriate
sending window for connections.

However, limited by the intrinsic long end-to-end control
loop, though proven to be effective or even widely deployed,
the algorithms above easily fall short under specific scenarios.
We conduct a simulation to illustrate defects of the state-of-
the-art with three competitive flows traversing a typical multi-
bottleneck topology, in which congestions exist both at the
network edges and inside. As shown in Fig. 1(b) and 1(c),
DCQCN fails to give a fast and precise response to con-
gestions, thus leading to drastic queue oscillation and under-
utilization; TIMELY cannot simultaneously achieve fairness
and guaranteed queuing delay.1

1As the best of these three schemes, we elaborate the performance degra-
dation of HPCC under specific scenarios in § V-B.

C. Most Congestion Happens at the Network Edge

Topology. Datacenter network topology plays a vital role
in determining the communication bandwidth and latency
between each pair of nodes. The tree-based hierarchical topol-
ogy with two or three tiers according to the network scale is
widely used in practice [19]–[22]. These topologies generally
have sufficient cross-sectional bandwidth and the core network
will not become a bottleneck [10].
Communication Pattern. Datacenters employ the scale-out
method to support large-scale applications. Generally, applica-
tions are hosted in tens of hundreds of servers [26], and there
are frequent communications between different pairs of nodes
to support various tasks from users. In fact, due to the sufficient
cross-sectional bandwidth and the widely existed many-to-
one/many-to-many communication patterns [11], most conges-
tion in full-bisectional/over-subscribed datacenters happens at
the network edge (or more specifically, the last hop) [10],
[23], [24]. For example, some popular applications (key-value
stores [25], data mining [26], parameter servers [27] used in
distributed machine learning frameworks, etc.) often generate
a number of scatter-gather [11], [28] and batch computing
tasks [29], causing the many-to-one communication pattern.
A study of Google’s production datacenters reveals that the
predominant source of congestion, accounting for 62.8%,
comes from the last hop in datacenter networks [13].

D. Brief Summary

Existing state-of-the-art RDMA congestion control solu-
tions follow a similar rationale: senders iteratively adjust
sending rates of flows according to the network congestion
signals. There is still room for improvement from the per-
spective of fairness, convergence rate, and end-to-end latency.
It is potential to design a more concise and efficient RDMA
congestion control algorithm by leveraging the special char-
acteristic that congestion often happens at the last hop in
datacenters.

III. DESIGN

A. Basic Idea and Challenges

The key idea of RCC is to leverage the observation that
most of the congestion happens at the receiver edge and
allocate bandwidth to connections according to different kinds
of congestion types. We classify network congestion into two
types: C1 happens at the last hop; C2 happens at other
places. The first type of congestion takes the majority of
network congestion in datacenter networks [30] and can be
easily solved at the receiver in one RTT. For the other in-
network congestion, RCC adjusts the bandwidth allocated to
each connection based on the network delay feedback.

To realize the basic idea of RCC, there are three main
challenges to be solved.
1. How to differentiate different types of network con-
gestion at receivers. To obtain the network congestion type,
we first need to detect whether and where network conges-
tion happens accurately and responsively. Generally, network
congestion can be detected based on widely-used advanced

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

106 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

signals, such as RTT, ECN, loss rate. However, instantaneous
value directly using the instantaneous value of them will
possibly lead to overreaction. On the other hand, using the
average value of them will possibly be unresponsive to net-
work congestion.
2. How to obtain accurate bandwidth sharing when
addressing congestion C1. In order to assign the last-hop
bandwidth accurately and fairly to RDMA connections,
a straightforward method is that receivers count the precise
number of active flows and then explicitly assign the average
bandwidth to each connection. However, consider an Incast
scenario, flows usually start one by one with a quite short
interval. In this case, at first, the receiver may assign a higher
congestion window to senders, causing the aggregate sending
rate of all the flows higher than the last-hop bandwidth.
3. How to achieve fast convergence and near-zero queuing
latency when addressing congestion C2. Due to the limited
information provided by ECN marks, it is hard to utilize
ECN to achieve fast convergence as well as near-zero queuing
latency. Existing delay-based congestion control protocols
such as TCP vegas [31], FAST TCP [32], and Compound
TCP [33] have inherent limitations to achieve both fast con-
vergence and low latency in current high-speed datacenter
networks. They only react after queue build-up. Although
TIMELY mitigates the problem by using the delay gradient,
it fails to converge to a fixed point.

B. Framework

Before proceeding to describe the framework of RCC,
we first explain why RCC is window-based and delay-based.

Window-based or rate-based. In rate-based congestion con-
trol schemes, packets are continuously sent before receiving
feedback, which may further aggravate congestion when feed-
back is delayed due to congestion. Window-based solutions
can avoid this problem by limiting the number of inflight
packets even if the feedback is delayed. In this way, congestion
will not be magnified, making the network more stabilized.

Delay-based or ECN-based. ECN is per-hop feedback,
which can prevent packet loss efficiently. However, ECN-based
schemes fail to effectively control the end-to-end queuing
length as the number of hops increases, while RTT is end-
to-end feedback information, which can be used to control the
end-to-end queuing length more effectively.

Fig. 2 shows the framework of RCC. It includes three
main functions: Differentiating Congestion Types (§ III-C),
Explicit Window Assignment (§ III-D) and PID-based Iterative
Adjustment (§ III-E). Each flow starts at line rate like other
RDMA congestion control mechanisms [4], [5], [9]. Each data
packet has a timestamp field to indicate the packet’s sending
time. As shown in Alg. 1, the receiver calculates the one-way
delay by subtracting the timestamp value from the current
time when the packet arrives (Line 3). Besides, if the packet
belongs to a new flow or is the last packet for an existing
flow, the receiver will update the number of active flows and
calculate the new fair share (Line 4).

If the flow has been in PID-based congestion control pro-
cedure, it will stay in this state until the end (Line 6-9). This

Fig. 2. The overview of RCC framework.

Algorithm 1 RCC Algorithm at Receiver Side
1: INPUT: data packet pkt
2: OUTPUT: sending window cwnd
3: rtt← CALCULATERTT(pkt)
4: num← UPDATEFLOWNUMBER(pkt)
5: fair_share← EXPLICITWINDOWASSIGNMENT(num)
6: if flow already in PID-based congestion control then
7: cwnd← PIDCONTROL(rtt, fair_share)
8: return
9: end if

10: if RX rate >= NIC speed ∗ η then
11: cwnd← fair_share
12: else
13: in_network ← CONGESTIONDETECTION(rtt)
14: if in_network == true then
15: cwnd← PIDCONTROL(rtt, fair_share)
16: else
17: cwnd← fair_share
18: end if
19: end if

is because most flows are quite short in high-speed datacenter
networks and switching between Explicit Window Assignment
and PID-based congestion control may cause in-network queue
oscillation. And the PID-based congestion control results will
be limited by Explicit Window Assignment. Thus, last-hop
congestion will not happen again.

Otherwise, the receiver uses one-way delay and other
information to determine if in-network congestion occurs
(Line 13). If in-network congestion does not happen, the
receiver explicitly assigns the sending window to the fair share
(Line 11 and 17). For in-network congestion, the receiver
adjusts the sending window using the PID-based congestion
control mechanism and the upper bound of the sending win-
dow is set to be the fair share (Line 15). After the adjustment
of sending window, the receiver piggybacks this information
by ACK packets to senders. The sender adjusts its sending
window after receiving each ACK packet.

C. Congestion Differentiation

Detecting Network Congestion. In RCC, each packet carries
the sending timestamp in its header. Upon receiving a packet,
a receiver can obtain the real-time one-way delay of the

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 107

corresponding connection. Note that here we assume that the
clock at senders and receivers are synchronized [34].

Let RTT base
i and RTTi(t) represent the base and measured

one-way delay of connection i, respectively. We can use the
difference between RTTi(t) and RTT base

i to infer whether
network congestion happens or not. If the difference between
RTTi(t) and RTT base

i exceeds a threshold, then RCC will
decrease the congestion window of connections.

However, many flows in datacenter networks are extremely
short [35], maybe containing only several packets. Besides,
each connection starts at line rate. Thus, these extremely short
flows possibly incur ephemerally high RTTi(t). If we directly
use RTTi(t) to detect network congestion and decrease the
congestion window of all connections once the instantaneous
RTTi(t) is larger than RTT base

i , network bandwidth will
possibly suffer from under-utilization.

Enlightened by the Fast Recovery mechanism in TCP,
we use n consecutive RTTi(t) values to infer whether network
congestion happens or not. Specifically, if n consecutive
RTTi(t) values satisfy the following inequation:

RTTi(t) > RTT base
i × (1 + δ), 0 < δ < 1, (1)

then we can infer that network congestion happens. δ repre-
sents the allowed congestion level caused by queuing.
Determining Congestion Type. First, we calculate the
received bytes of all connections, BR, in the last round.2

The sample duration is set to RTT base
i . Let η ∈ (0, 1)

represent the expected link utilization of the last hop.
If BR > C × min

i
(RTT base

i) × η, then we can infer that

the bandwidth of the last hop has been fully utilized, where
c represents the bandwidth of the last hop. Thus, network
congestion happens at the last hop. Otherwise, congestion
happens at other places.

D. Explicit Window Assignment

Counting the Number of Messages, N . Unlike the
stream-oriented protocol TCP, RDMA is a message-oriented
one. Thus, we can easily count the number of transmitted
messages based on the begin/end mark in IB BTH (InfiniBand
Basic Transport Header). For example, in an RDMA Write
operation, the first packet’s opcode field in BTH header is set
to RDMA Write First; the final packet of the message has
an opcode as either RDMA Write Last or RDMA Write
Last With Immediate. Thus, we can track the number of
messages accurately in RDMA NICs by checking the opcode
field of each packet. Similarly, we can also count the number
of messages generated in other RDMA operations.
Computing Accurate Bandwidth Sharing. A receiver com-
putes the congestion window for each connection i, W (i) =
C
N . This computed value will be delivered to senders by ACKs.
We mitigate the impacts of the second challenge by combining
per-ACK window adjustment and packet pacing. Receivers
piggyback the assigned window in each ACK packet based
on the current active flow number. Therefore, the improper
larger window sent to the senders will only last a very short

2The term ‘round’ here refers to RTT. That is, BR is the sum of the bytes
received by all connections in the previous RTT.

Fig. 3. Structure of PID-based congestion control.

time, that is, the time between two consecutive ACK packets.
Moreover, NICs at senders use the packet pacing to add
space between consecutive packets of all flows. Through these
mechanisms, each ACK packet that carries larger window
information can only trigger a small number of extra data
packets. Correspondingly, the overall sending rate of Incast
flows will not cause too large instantaneous queuing.

E. PID-Based Congestion Control

For in-network congestion, RCC uses a PID controller to
govern the dynamics of the sending window. In general, PID
control is an adaptive optimization method widely used in
various closed-loop feedback systems [36]. By applying error-
based proportional (P), integral (I) and differential (D) regu-
lation terms to the controlled object, the system can quickly
respond to external disturbances and converge to the steady-
state. Compared with the parameter-fixed AIMD3 adjustment
scheme adopted in traditional TCP, PID control can flexibly
select the combination of regulation terms according to the
characteristics of the actual system. In addition, the calibration
based on real-time error sampling enables the controlled sys-
tem to adaptively realize dynamic adjustment according to the
real-time state of the system, avoiding continuous oscillation
caused by coarse-grained control.

Specifically, in RCC, the controller continuously adapts the
window to the estimated delay in order to match RTT target

i .
RTT target

i controls the tradeoff between the bandwidth uti-
lization and the steady-state queue length. It should be a
little larger than RTT base

i and smaller than the RTT value
in congestion scenarios. Thus, we let

RTT target
i = RTT base

i × (1 +
δ

2
) (2)

Computing the Control Factor. Fig. 3 illustrates the structure
of PID-based congestion control by which RCC handles in-
network congestion. It continuously calculates the error value
Ei(t) of connection i as the difference between the actual
measured value RTTi(t) and RTT target

i , that is,

Ei(t) = RTTi(t)−RTT target
i (3)

To compute the control factor Ui(t), which is used to
adjust the sending window, the controller applies a correction
based on proportional, integral, and derivative terms. In RCC,
the parameter of integral term Ki is set to 0. Equation (4)
expresses the overall control function. The proportional term

3Additive Increase in Congestion Avoidance Phase and Multiplicative
Decrease in Fast Recovery Phase.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

108 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

gives an instantaneous response to the error value Ei(t), while
the derivative term is an estimation of the future trend of Ei(t).

Ui(t) = Ui(t− 1) + Kp × Ei(t) + Kd × [Ei(t)− Ei(t− 1)]
(4)

The proportional term can ensure that the PID-based con-
gestion control mechanism converges to a fixed point, while
the derivative term is used to achieve rapid convergence speed.
Finally, with proper settings of these two parameters, RCC can
maintain near-zero steady-state queues in the network without
compromising other performance metrics.
Computing the Sending Window. RCC uses the con-
trol factor Ui(t) to adjust the sending window of flows.
If Ui(t) > 0, which indicates that the inflight packets is larger
than the network capacity, RCC will perform a multiplica-
tive window decrement. Otherwise, a multiplicative window
increment will be conducted since the network has available
bandwidth. For ease of deployment, we use tanh(·) (a function
ranges in (−1, 1)) to scale the window size as follows:

Wi(t) = Wi(t− 1)× [1− tanh(Ui(t))] (5)

Due to the derivative term in (4), the increment of window
size will gradually decrease as the window becomes larger,
eliminating the unfairness caused by pure MIMD algorithms.

It is worth noting that formally, equation (4) adopts pro-
portional and differential terms in standard PID control on
the error value of RTT, but for the control factor U(t)
which finally determines the dynamics of sending window,
(4) actually exerts feedback gain for its difference term
(i.e., Ui(t)−Ui(t− 1)). After performing cumulative summa-
tion on both sides of (4), it can be seen that RCC essentially
adopts PI regulation for the system.4

F. Parameters and Overhead of RCC

Parameters of RCC. The congestion differentiation mod-
ule of RCC has three parameters: n, δ, η. n and δ control
the tradeoff between throughput and transient queue length.
To maximize throughput, transient queues are inevitable.
We set n = 3 and δ = 0.2 for high throughput and near-
zero queuing. And the expected utilization of the last hop,
η is set to 0.95.

The PID-based scheme has two additional parameters:
Kp and Kd. They control the speed of convergence to fairness
and steady-state. The larger the Kd is, the faster the conver-
gence speed will be. However, larger Kd will cause oscillation.
We will discuss this in detail in § IV.
Overhead of RCC. Table I summarizes all state variables
maintained by each RCC connection. Collectively, RCC uses
52 bytes in the sender and receiver for each RDMA con-
nection. This memory footprint is comparable to other state-
of-the-art RDMA congestion control protocols.5 Besides, the
computation overhead is negligible with a background thread.

4In fact, this indirect PI control is also used in [40]–[43]. For the simplicity
and consistency throughout this paper, we use the notation “PID” and symbols
in equation (4) to represent the closed-loop feedback control of RCC.

5For instance, ∼ 60 bytes in DCQCN [5].

TABLE I

STATE VARIABLES OF RCC

G. Deployment Choices

Clock Synchronization. The deployment of RCC relies on
high precision clock synchronization throughout the datacenter
network. Some recent research efforts can reduce the upper
bound of clock synchronization within a datacenter to a few
hundred nanoseconds, which is sufficient for our work [37],
[38]. And the recent work, On-Ramp, is also trying to use the
one-way delay to solve datacenter network congestion [39].

Even without high precision clock synchronization,
RCC can still be practically deployed by moving the delay
calculation and PID-based congestion control to the sender
side; the receiver side only calculates and feeds back the flow
number N and the throughput BR. This solves the problem
of not being able to obtain the one-way delay.

IV. THEORETICAL ANALYSIS

In this section, we explore the stability, convergence and
fairness of RCC based on the fluid model and the control
system theory [36].

A. Model Formalization

Considering N long-lived flows traversing a single bottle-
neck link with capacity C, taking account of the relationship
between Q and RTT , i.e., Ri(t) = q(t)

C + d, the non-linear,
delay-differential equations below describe the dynamics of
Wi(t), Q(t) and Ri(t):

dWi(t)
dt

= −Wi(t)tanh(Ui(t))
Ri(t)

(6)

dQ(t)
dt

=
N∑

i

Wi(t)
Ri(t)

− C (7)

dRi(t)
dt

=
1
C

dQ(t)
dt

(8)

where d is the shared propagation delay, Ri(t) and Q(t)
C denote

the RTT and shared queuing delay, respectively.
As for the control factor Ui(t) in (4), we take bilinear

transformation6 [40] to convert it into a continuous one:

dUi(t)
dt

=
Kp

Ri(t)
[Ri(t)−Rref] + (Kd +

Kp

2
)
dRi(t)

dt
(9)

where Rref = RTT target is the expected value in equilibrium.

6A tool for converting continuous-time (s-transform) and discrete-time
(z-transform) system functions without affecting the stability of the system,
also known as Tustin transform. The conversion formula is z = 2+sT

2−sT
, where

T is the system sampling interval.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 109

Equation (6) describes the variation of the sending window
along with the difference between the real value and the
reference value of RTT measured at receiver side, while
equation (7) indicates the queuing process at the switch.
Equations (8) and (9) capture the evolution of direct and
indirect control signals, respectively. By letting the LHS
of (6)-(9) equal 0, with the assumption that all flows are
synchronized and peak simultaneously (which is obvious), it is
easily verified that W , Q and R do not reach the steady-state
until they satisfy:

tanh(Ui)∗ = 0 and Ri∗ = Rref (10)
W1∗
R1∗ =

W2∗
R2∗ = · · · = WN∗

RN∗ (11)

where symbol ∗ indicates the value at the fixed points, which
also represents the fairness of all flows in equilibrium.

B. Derivation of the System Transfer Function

Referring to the linearization and Laplace transformation
method used in [41]–[43], we give the derivation of the system
function for RCC as follows:

For simplicity, we denoting Wi∗ and Rref as W0 and
R0, respectively. To linearize the fluid model around the
fixed points represented in equations (10) and (11), we firstly
redefine the RHS of equations (6), (7) and (9) by:

f(W, R, U) .= −Wi(t)tanh(Ui(t))
Ri(t)

g(W, R) .= N
Wi(t)
Ri(t)

− C

h(R) .=
Kp

R0
[Ri(t)−R0] + (Kd +

Kp

2
)
dRi(t)

dt
(12)

According to the relationship between Ri and Q in equa-
tion (8) and evaluating partials at the fixed point (W0, R0, U∗)
of (12) gives:

∂f

∂W
= − tanh(Ui)∗

R0
= 0

∂f

∂R
=

W0tanh(Ui)∗
R2

0

= 0

∂f

∂U
= −W0[1− tanh2(Ui)∗]

R0
= −C

N
(13)

∂g

∂W
= − N

R0

∂g

∂R
= −NW0

R2
0

= − C

R0
(14)

∂h

∂Q
=

Kp

CR0

∂h

∂Q̇
=

1
C

(Kd +
Kp

2
) (15)

where Q̇ is the differential of Q.
With the denotions δW

.= W −W0, δQ
.= Q−Q∗, δU

.=
U−U∗, we make linearization around the operation point and
obtain:

˙δW (t) = −C

N
δU(t)

Fig. 4. Phase margin as a function of parameter Kp and Kd.

˙δQ(t) =
N

R0
δW (t)− C

R0
δR(t)

˙δU(t) =
Kp

CR0
δQ(t) +

1
C

(Kd +
Kp

2
) ˙δQ(t) (16)

Performing the Laplace transform on differential equations
in (16) we get:

W (s) = − C

Ns
U(s)

Q(s) =
N

sR0 + 1
W (s)

U(s) = −
Kp

R0
+ (Kd + Kp

2)s
Cs

(17)

Combining functions in (17), we finally get the open-loop
transfer function of the whole system as follows:

G(s) = K
1 + s

z

s2(s + 1
R0

)
(18)

where K = Kp

R2
0

and z = Kp

(Kd+Kp/2)R0
.

C. Stability Analysis and Control Parameters

According to the Bode Stability Criteria, a system is stable
only if the phase margin in the Bode diagram of the transfer
function G(s) is above 0. And the higher the phase margin,
the more stable the system. Taking the setting mentioned
above for parameter δ with 0.2, i.e., Rref = 13.2μs, Fig. 4
shows the variation of the phase margin relative to different
(Kp, Kd) pairs. As shown in Fig. 4, setting Kp ∈ [1, 104]
and Kd ∈ [103, 105] ensures an acceptable phase margin
above 30 degrees. Besides, to make the system more stable,
Kp should be one or two orders of magnitude smaller than Kd.
In fact, the response speed (time taken to reach equilibrium)
and the optimal operation range (with guaranteed open-loop
gain) of a system are often opposite, which will be discussed
below.

D. Convergence Analysis

Proof As concluded in [44], PID controllers (like the
one used in RCC) that can be characterized by a SISO
ARMAX7 model shown in equation (19) and be optimized

7SISO ARMAX stands for Single-Input-Single-Output AutoRegressive Mov-
ing Average with eXtra input, which describes a controlled system with
external interference.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

110 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Fig. 5. The trend of RCC stability and convergence under different (Kp,Kd) pairs.

by a generalized minimum variance objective function like
equation (20) have global convergence8 in equation (21).

A(q−1)y(t) = q−dB(q−1)u(t) + C(q−1)ω(t) (19)

where y(t) and u(t) are the output and input sequences of the
system, respectively. d is the system delay, ω(t) is a random
sequence defined in the probability space (Ω, F, P), A(q−1),
B(q−1) and C(q−1) are model operator polynomials.

J = E{[P̊ y(t + d)− R̊yt(t)]2 + [Q̊′u(t)]2} (20)

where P̊ , R̊ and Q̊′ are known weighted polynomials about
q−1, and yt(t) is the target reference output.

lim
N→∞

N∑

t=1

[e(t)− E̊ω(t)]2

r(t − 1)
(21)

where e(t) = y(t) − yt(t), r(t) is an observable random
sequence and E̊ is a polynomial solution satisfying the Dio-
phantine equation.9

As demonstrated in [44], all operators and noises
(i.e., random sequences ω(t) and r(t)) in equations (19)-(21)
have nothing to do with the design details of RCC, that is,
for an arbitrarily set reference value yt (Rref in RCC) of
the controlled signal, a specific parameter combination can
always be found to meet the convergence condition shown
in equation (21). Intuitively, under the optimization of (20),
the error signal e(t) (e.g., Ei(t) in RCC) of the system will
eventually approach a fixed value; that is, the system has
global convergence under the adjustment of the controlled
parameters. See [44] for complete proof. �

To further explore the trade-off between system convergence
and stability, we use numerical simulation to solve the phase
margin (PM) and loop bandwidth (LB) under a series of
(Kp, Kd) pairs, where the absolute values of these two terms
are positively correlated with the degree of stability and the
convergence speed, respectively. We start Kp from 1 with five

8Global convergence is a kind of strong attribute, where the system will
always eventually stabilize around a unique point under any initial conditions.

9The Diophantine equation describes the relationship between E̊ and
operators A, B and C, which is independent of the specific expressions
relevant operators.

doubling rounds, and construct a wide variation range for Kd

by offering 31 sets of scale factors (i.e., Kd/Kp).
The trends of PM and LB are shown in Fig. 5. We find that

PM has a maximum with the increase of Kd for any given Kp,
and a smaller Kp owns a wider stable range. Besides, under
the same scale factor, PM sharply decreases as Kp doubles,
which indicates that the proportional term, Kp, as the primary
control item of PID control, needs to be adjusted prudently.
However, for any given Kp, LB increases monotonically with
respect to the scale factor, and under a fixed scale factor, the
increase of Kp will cause a synchronous growth of LB, which
will bring a faster system response. In a nutshell, Kp has a
mutually-exclusive impact on stability and convergence.

Besides, as shown in Fig. 5(b), RCC achieves near-ideal
convergence speed, the difference between numerical (brown)
and NS3 (black) simulations reduces (22.56% → 0.54%) as
scale factor grows. We take the (1, 1000) pair as the refer-
ence, which gives a 1

1000Hz = 1ms ideal convergence time.
Considering stability and convergence speed comprehensively
with the actual RTT magnitude, we limit Kp ∈ [1, 16] and
Kd ∈ [103, 7× 103] in actual use.

V. SIMULATION EVALUATION

In this section, we evaluate the performance of RCC by con-
ducting both micro-benchmarks and large-scale simulations.

A. Evaluation Setup

Network Topology. A fat-tree topology is used in large-
scale simulations. It consists of 320 hosts, 20 ToR switches,
20 aggregation switches, and 16 core switches. Hosts and ToRs
are connected with 100 Gbps links, while all switches are
connected via 400 Gbps links. The delay of each link is set
to 1μs, which gives a 12μs base RTT. The switch buffer size
is set to 32MB according to real device configurations [4].
Schemes Compared. We compare RCC with DCQCN,
TIMELY, HPCC, Homa [45] and ExpressPass [46]. Homa and
ExpressPass are typical receiver-driven transport protocols,
although they are not designed for RDMA networks. We use
the open-source code of DCQCN [47], Homa [48] and HPCC

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 111

Fig. 6. Fast convergence and fairness.

in our evaluation and implement ExpressPass and TIMELY
based on their algorithms.
Parameter Settings. For RCC, we set δ = 0.2, which leads
to a 13.2μs RTT target

i . Then, we set Kp = 1 × 104 and
Kd = 1×105 based on the analysis in § IV. For other schemes,
we use the parameters suggested in the corresponding papers.
We also scale the ECN marking threshold proportional to the
link bandwidth suggested in [4] for DCQCN.
Benchmark Workloads. We use four kinds of realistic dat-
acenter workloads (web search [18], data mining [20], web
server [12] and cache follower [12]) that are widely used in
prior literature for large-scale simulations.
Performance Metrics. The performance of RCC is evaluated
using the following metrics: (1) goodput, (2) convergence
speed/fairness, (3) average FCT, (4) tail FCT, and (5) in-
network queuing length.

B. Micro-Benchmarks

We compare RCC with HPCC in several micro-benchmarks
since HPCC is regarded as the best solution for the time being.
1) Fast Convergence and Fairness. We show that RCC
flows can quickly react to changes in available bandwidth and
rapidly converge to appropriate flow rates. Besides, we evalu-
ate the fairness of RCC.

Setup: We use a dumbbell topology, where four senders and
one receiver are connected with the same 100 Gbps bottleneck
link. Four senders transmit one flow to the receiver in turn with
an interval of 100ms. The lengths of the four flows are 4.4,
2.2, 1.1 and 0.27 GB, respectively.

Result: Fig. 6 shows the goodput of the four flows in RCC
and HPCC. RCC quickly throttles the rate of existing flows
upon a new flow starts, and recovers the rate of other flows
after a flow ends. This is because the receiver has precise
information about the flow number being transmitted. When
a flow finishes, RCC only needs one RTT to re-assign the
sending window for existing flows to fully utilize the newly
available bandwidth. As a result, the overall goodput of RCC is
more stable. However, HPCC needs several RTTs to converge
to a stable rate after a flow arrives/finishes.

Fig. 6 also illustrates the fairness of RCC and HPCC. RCC
provides better fairness even in a short time scale. All flows
evenly share the bottleneck bandwidth and grab their fair
share quickly. Specifically, when N varies from 1 to 4, each
flow’s goodput quickly converges to ∼ 100×0.95

N Gbps, giving
a Jain fairness index within 0.998 ∼ 0.999 (1 is optimal).
However, flows in HPCC can not get the fair share under

Fig. 7. Goodput and FCT in the Incast scenario.

Fig. 8. Queuing length under Incast scenario.

a various number of concurrency and the goodput suffers
oscillation.
2) Incast. Next, we evaluate the performance of RCC under
the Incast scenario.

Setup: One receiver initiates connections with 1000 senders
and requests 200KB data from each sender simultaneously.
This workload is similar to the workload used in [49]. Besides,
there is also a long-lived background flow to the receiver.
We evaluate the overall FCT and the goodput of flows.

Result: Fig. 7 illustrates how RCC and HPCC react to
congestion caused by Incast. The aggregate goodput of RCC
and HPCC is similar. The total goodput of the 1000 flows
remains stable as time goes on, at around 94.98Gbps.
As for the average FCT of Incast flows, RCC performs
much better than HPCC. RCC improves the median of FCT
by about 5.2% and improves the 99th percentile FCT by
about 4.1%.
3) Low Queuing Latency. Incast traffic likely causes instan-
taneous large queuing latency due to its burstiness. We next
show the queuing latency of RCC in this scenario.

Setup: We use the same Incast traffic as above and measure
the queue length at the bottleneck switch.

Result: Fig. 8 shows the queue length of HPCC and
RCC under Incast. RCC keeps near-zero queue length since
it explicitly assigns window size and combines per-ACK
feedback and packet pacing. In HPCC, the queue builds up
to 900KB due to its slow responsiveness to the large flow
concurrency.

C. Large-Scale Simulations

Now, we evaluate the performance of RCC in large-scale
scenarios. We use the fat-tree topology mentioned in § V-A
and generate traffic according to the four realistic workloads.
1) Overall Performance.

Result: Fig. 9 shows the average FCT achieved by each
scheme under four workloads and different link loads. The per-
formance of RCC is better than Homa, ExpressPass, DCQCN,

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

112 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Fig. 9. Overall performance under four realistic workloads.

Fig. 10. Overall performance in web search workload.

Fig. 11. Overall performance in data mining workload.

TIMELY and HPCC. In the web search workload, the overall
average FCT with RCC is up to 9%, 11%, 11%, 30% and 45%
lower compared with HPCC, Homa, ExpressPass, DCQCN
and TIMELY, respectively. And the results change to 7%, 4%,
15%, 18% and 19% under the data mining workload. Besides,
RCC delivers the best performance under the web server and
cache follower workloads. The improvement of RCC over
HPCC in the overall average FCT is also obvious: 5 ∼ 11%
for the web server workload and ∼ 14% for the cache follower
workload.
2) FCT Breakdown Based on Flow Size.

Result: We break down the FCT across flow sizes as shown
in Fig. 10 and Fig. 11. We omit the results of web server and
cache follower workloads since the performance is consistent
with the other workloads.

For short flows, though under which Homa is proved to be
highly effective, RCC performs better than it and HPCC, and
greatly outperforms ExpressPass, DCQCN and TIMELY. This
is because RCC keeps near-zero queue length and handles con-
gestion rapidly by combining the Explicit Window Assignment
mechanism with the PID-based congestion control, while the
core packet spraying scheme used in Homa may encounter var-
ious issues. Fig. 11(a) and 11(b) show that RCC has a slightly
better performance than HPCC both in average FCT and

99th percentile FCT under the data mining workload. Besides,
RCC improves the average/99th percentile FCT by 10 ∼ 25%
and 21 ∼ 50% compared with DCQCN, respectively. In the
web search workload, RCC still achieves better performance
than HPCC and gains similar FCT reduction over the other
four schemes as under data mining workload.

As for long flows, RCC performs better than all the other
schemes. In the data mining workload, RCC performs better
than HPCC in terms of the average and 99th percentile FCT.
RCC also achieves great performance for long flows in the
web search workload. Compared with DCQCN, RCC reduces
by 25 ∼ 31% for the average FCT and up to 37% for the
99th percentile FCT. This is because RCC can rapidly reach
the fair share by the Explicit Window Assignment algorithm.

D. RCC Deep Dive

In this section, we dig deeper into RCC’s design by con-
ducting a series of targeted simulations.
1) Impact of Clock Synchronization.

Setup: To explore the impact of clock synchronization
mechanism on the performance of RCC, we construct two
control groups, in which RCC-async simulates the interference
of asynchronous clock by introducing random time jitter, while

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 113

Fig. 12. The impacts of clock synchronization and parameter n on RCC.

RCC-sender moves the PID control logic to the sender side
(as elaborated in § III-G). We run RCC, RCC-async and
RCC-sender using the same settings in § V-B-2).

Result: Fig. 12(a) illustrates that time jitter caused by clock
synchronization does lead to a deterioration on the goodput,
but not pretty severe as the result in RCC-sender achieves
similar steady and high throughput compared with RCC, which
again verifies the feasibility of deployment choice in § III-G.
In fact, the impact caused by the congestion signal transition
from one-way delay to RTT will be alleviated by the order-
of-magnitude difference between end-to-end delay and the
per-ACK window adjustment manner, thus there will be no
avalanche decline in performance.
2) Settings of Parameter n in Congestion Detection.

Setup: As a congestion control mechanism, whether con-
gestion can be detected efficiently and accurately is the key
to achieve optimal performance, which is dominated by para-
meter n. To determine the least boundary conditions of n,
we take RCC (i.e., n = 3) in 1) as the baseline and measure the
goodput of bottleneck link with the same simulation settings.

Result: The results in Fig. 12(b) reveal that instantaneous
delay rag (n = 1) would fuzz up congestion detection thus
degrading performance of RCC compared with recommended
parameter settings (n = 3). In addition, the goodput of the
bottleneck link keeps approaching the optimal steady-state
performance as the RTT sampling value (i.e., n) increases.
Actually, RCC gives a similar performance when n > 2,
thus we choose n = 3 as the least boundary for congestion
detection for simplicity and effectiveness.
3) Impact of the Scale Function in PID Controller.

Setup: To explain in depth the reason for introducing
tanh(·) to shape the congestion signal Ui(t), we denote the
scaling term 1 − tanh(·) in equation (5) as S0, and then
use sigmoid(·)10 to construct two new scaling terms S1 =
1− sigmoid(·), S2 = 2− 2sigmoid(·). S1 is similar to S0 in
form but has a smaller range, while S2 has the same range
with S0 but cannot derive the delay-differential equation like
(6). We modified RCC with different scale functions and rerun
the simulations in § V-B-3).

Result: We can observe from Fig. 13 that the alter
of scale function would lead to an apparent reduction on
goodput and a persistent oscillation in bottleneck queue
length. This further shows the robustness of recommended
tanh(·) reshaper. In fact, as a centrosymmetric function about

10Sigmoid(·) is another widely used normalization function with a range
of (0,1). Its expression is S(x) = 1

1+e−x .

Fig. 13. The impact of different scale functions.

TABLE II

PAUSE TIME (%) UNDER DIFFERENT INCAST SEVERITY

reference point (0,1), tanh(·) performs homomorphic window
adjustment on both sides of the ideal equilibrium point, thus
ensuring the fairness of the whole system. It also avoids
excessive interference of noise signal through non-uniform
scaling, which has a vital impact on the stability, fairness
and convergence of PID controller. And as a window-based
congestion control algorithm, the application of tanh(·) in
RCC constrains the upper/lower limits of window adjustment,
which is consistent with the maximum halving boundary
setting in classical algorithms like DCTCP and DCQCN.
In comparison, although S1 and S2 share either the same
differentiability or same value range with S0, the lack of the
other property results in the sluggish response with S1 and the
instability with S2.
4) Robustness to PFC Activation.

Setup: To quantify the superior performance of RCC in
preventing PFC activation, we conduct a series of N-to-1 Incast
scenarios with each sender sends 200KB data.

Result: As shown in Table II, benefiting from the
receiver-driven congestion divide-and-conquer, PFC is rarely
triggered under the control of RCC (only 0.3% under 256 con-
currency). By contrast, lots of PFC pause frames are gener-
ated in DCQCN and TIMELY with concurrent flows larger
than 128; this can easily impair the performance of the entire
network.
5) The Effects of Explicit Window Assignment and
PID-Based Congestion Control.

Setup: To evaluate the effect of the schemes in § III-D
and § III-E, we compare the complete RCC with RCC-PID
(RCC without Explicit Window Assignment) and RCC-EWA
(RCC without PID-based Congestion Control) in the fat-tree
topology with the web search workload.

Result: Fig. 14 shows the average FCT of RCC, RCC-PID
and RCC-EWA. We observe that there is always a gap in the
FCT results with RCC in the last two schemes, which indicates
that both EWA and PID are vital for better performance in
RCC. Specifically, RCC outperforms RCC-PID and RCC-
EWA by up to 28% and 19% on average, and the result of
tail FCT breakdown is similar. The gap would be remedied

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

114 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

Fig. 14. RCC deep dive in web search workload.

Fig. 15. RCC deep dive with multi-bottleneck topology.

by equipment with either the EWA or PID part, as detailed in
the next simulation.
6) The Effects of EWA and PID in More Detail.

Setup: We run RCC-PID, RCC-EWA and RCC using the
multi-bottleneck topology in Fig. 1(a) with three flows to
quantify the benefits of combining these two schemes. Flow 1
begins to transmit data at line rate, then we start flow 2, 3 at
100ms and 200ms to construct both in-network and last-hop
congestion with flow 1. Besides, we add flags in EWA and PID
units to check the validity and accuracy of congestion detection
and differentiation algorithms. All links are 100Gbps.

Result: Fig. 15 shows the goodput of three flows in each
scheme. We observe from Fig. 15(a) that RCC-PID requires
several iterations to reach the proper sending rate every time
the number of flows changes. Fig. 15(b) and 15(d) show
that flow 1 and 2 can not share the bottleneck bandwidth
fairly and build a large queue in the network. However,
Fig. 15(c) illustrates that RCC handles different kinds of
congestion perfectly by combining EWA and PID parts and
achieves near-zero queuing length. Moreover, the consistency
of detected congestion type with constructed congestions
(denoted as ×) in Fig. 15(a)-(c) indicates that the congestion
detection and differentiation in RCC are effective and accurate.

VI. TESTBED EVALUATION

In this section, we implement RCC with DPDK [50] and
conduct testbed experiments to validate its performance com-
pared with simulation results.

A. Implementation and Settings

In order to emulate the kernel bypass property of RDMA,
we implement RCC based on the user-level mTCP stack
[51]. Specifically, function ProcessACK() in tcp_in.c covers
the main algorithm of RCC and corresponding state variables
are added to basic packet headers. We plug in a Mellanox
ConnectX5-EN NIC on each of the two Dell PowerEdge R730
servers to act as sender and receiver, respectively. Each NIC
has two 25Gbps Ethernet ports, so the server can work as two
senders or receivers. We build a two-tier network topology
with three switches and then connected the servers to the two
leaf switches. The rate of all links is 25Gbps. Each server in
this topology is equipped with two Intel Xeon E5-2609 v4
CPUs (8 cores, 1.7 GHz), 128 GB 2133 MT/s DDR4 RAM.

B. Cross Validation of EWA and PID Components

The highlight of RCC lies in its differentiated treatment
of different types of network congestion. To verify the basic
performance of the algorithm design, we run two different
experiments on both the testbed and NS3 simulator and
measure throughput and switch egress queue length. In both
testbed and simulator, the RTT is about 12μs. So the parame-
ters are set to be the same in hardware experiments and NS3
simulations.

In the first experiment, each sender generates one flow to
the same receiver, which results in the last-hop congestion.
Fig. 16(a) shows the sending rate stabilizes at 12Gbps with a
near-zero queue length for both the testbed and simulation.

In the second experiment, each sender generates one flow to
different receivers, which results in the in-network congestion.
Fig. 16(b) shows that the sending rate stabilizes at 12Gbps
for both the testbed and simulation. In the steady-state, the
throughput of two senders oscillates with low amplitude in
both testbed and simulation and the queue length is limited
to a very low level. Results verify that both EWA and

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 115

Fig. 16. Cross validation with simulations.

Fig. 17. Performance of RCC testbed under 3-to-1 Incast.

PID components in RCC would behave as expected (that in
simulations) under real datacenter network environments.

C. Performance Under Incast Scenario

To cross-validate the ability of RCC to deal with abnormal
traffic patterns in real scenarios, we reuse the environment
settings in § VI-B, but connect these two servers to one switch,
which gives a 3-to-1 Incast scenario. The frontend application
on one end-host (receiver) sends requests to the other three
end-hosts (senders). Upon receiving the request, each sender
replies with continuous elephant flow immediately. We apply
the same settings in NS3 simulator and record the goodput
and switch queue length. Fig. 17 demonstrates that despite the
presence of oscillation and jitter, the results of the simulation
and the experiment can still maintain an absolute degree of
consistency, which is acceptable and valuable.

VII. RELATED WORK

Congestion control (CC) is an enduring topic in data center
networks (DCN), and a plethora of novel proposals have
emerged over the last decade. Here we briefly introduce some
closely related work.

A. Sender-Based Congestion Control

DCTCP [18] is the first ECN-based CC algorithm used
in DCN. It adjusts each flow’s sending rate according to
the ECN-mark fraction in each RTT. With the prosperity of
RDMA in DCN, sender-based RDMA-specific CC mecha-
nisms are proposed, which passively adjust the transmission
behavior at senders according to various congestion signals.
DCQCN [5] reacts to ECN marks, TIMELY [9] and Swift [52]
use RTT variation, while HPCC [4] relies on precise link load
information. Due to the long end-to-end control loop, these
solutions require several RTTs to iteratively converge to the
fair share, while RCC needs only one RTT for handling the
dominant last-hop congestion.

B. Receiver-Driven Congestion Control

To avoid possible performance degradation under Incast
scenario, some proposals suggest shifting the control entity
to the receiver side. pHost [53] and ExpressPass [46] prevents
congestion by explicitly sending well-controlled tokens/credits
to senders. However, RDMA NICs are hard to maintain differ-
ent timers for flow-level packet pacing implement. Homa [45]
uses priority queues to schedule packets dynamically. How-
ever, since the core packet spraying [54] scheme likely incurs
packet reordering, it is not well-supported in RDMA networks.
Aeolus [55] assists receiver-driven CCs by prioritizing sched-
uled packets over unscheduled along with effective selective
dropping and recovery schemes, but issues like core congestion
are pendent. In essence, the effectiveness of receiver-driven
solutions coping with the last-hop congestion highly depends
on the assumption that most congestion happens at the ToR
downlink [13]. RCC inherits this good feature but pushes
further for designing a dedicated scheme for the in-network
congestion.

C. Switch-Driven Solutions

XCP [56] and RCP [57] are two proactive rate control
schemes designed primarily for TCP. With the participation
of the switch, the former adjusts the window size information
in the packet header, while the latter calculates each link’s fair
rate. TFC [58] proposes a token-based bandwidth allocation
scheme based on the active flow number in each time interval,
while BFC [59] tracks active flows to achieve accurate per-
hop per-flow flow control and is compatible with end-to-end
solutions. RoCC [40] proactively computes the fair flow rate
and piggybacks it to the sender based on PI controller at the
switch, RCC differs from it in indirect control and continuous
control factor scaling.

VIII. CONCLUSION

This paper presents RCC, a receiver-driven transport for
RDMA in datacenters. It can efficiently utilize the network
bandwidth while keeping near-zero in-network queue length.
By differentiating network congestion types, RCC employs
novel Explicit Window Assignment and PID-based conges-
tion control to address the last-hop and in-network conges-
tion, respectively. The results of the testbed experiments and
large-scale simulations validate that RCC achieves low queu-
ing latency, high bandwidth utilization, and fairness simulta-
neously.

REFERENCES

[1] J. Zhang et al., “Receiver-driven RDMA congestion control by differ-
entiating congestion types in datacenter networks,” in Proc. IEEE 29th
Int. Conf. Netw. Protocols (ICNP), Nov. 2021, pp. 1–12.

[2] K. Hazelwood et al., “Applied machine learning at facebook: A datacen-
ter infrastructure perspective,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2018, pp. 620–629.

[3] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar,
“Flash storage disaggregation,” in Proc. 11th Eur. Conf. Comput. Syst.,
Apr. 2016, pp. 1–15.

[4] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, and Z. Cao, “HPCC:
High precision congestion control,” in Proc. ACM SIGCOMM, 2019,
pp. 44–58.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

116 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 1, FEBRUARY 2023

[5] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 523–536,
2015.

[6] C. Guo et al., “RDMA over commodity Ethernet at scale,” in Proc. ACM
SIGCOMM Conf., Aug. 2016, pp. 202–215.

[7] K. Qian, W. Cheng, T. Zhang, and F. Ren, “Gentle flow control:
Avoiding deadlock in lossless networks,” in Proc. ACM SIGCOMM,
2019, pp. 75–89.

[8] Y. Gao, Y. Yang, T. Chen, J. Zheng, B. Mao, and G. Chen, “DCQCN+:
Taming large-scale incast congestion in RDMA over Ethernet networks,”
in Proc. IEEE 26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018,
pp. 110–120.

[9] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, and M. Ghobadi,
“TIMELY: RTT-based congestion control for the datacenter,” in Proc.
ACM SIGCOMM, 2015, pp. 537–550.

[10] M. Handley et al., “Re-architecting datacenter networks and stacks for
low latency and high performance,” in Proc. Conf. ACM Special Interest
Group Data Commun., Aug. 2017, pp. 29–42.

[11] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. ACM
SIGCOMM, 2009, pp. 202–208.

[12] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (Datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 123–137.

[13] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015.

[14] The NS3 Simulator. Accessed: Apr. 10, 2021. [Online]. Available:
https://www.nsnam.org/

[15] I. Marinos, R. N. M. Watson, and M. Handley, “Network stack spe-
cialization for performance,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 175–186, Feb. 2015.

[16] Supplement to InfiniBand Architecture Specification Volume 1 Release
1.2.2 Annex A17: RoCEv2 (IP Routable RoCE), Infiniband Trade Asso-
ciation, Armonk, NY, USA, 2014.

[17] 802.1Qbb—Priority-Based Flow Control. Accessed: Apr. 10, 2021.
[Online]. Available: http://www.ieee802.org/1/pages/802.1bb.html

[18] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf. (SIGCOMM), 2010, pp. 63–74.

[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Computer Commun. Rev.,
vol. 38, no. 4, pp. 63–74, Aug. 2008.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, and
P. Lahiri, “VL2: A scalable and flexible data center network,” in Proc.
ACM SIGCOMM, 2009, pp. 51–62.

[21] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, and Y. Shi, “BCube: A
high performance, server-centric network architecture for modular data
centers,” in Proc. ACM SIGCOMM, 2009, pp. 63–74.

[22] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scalable
and fault-tolerant network structure for data centers,” in Proc. ACM
SIGCOMM, 2008, pp. 75–86.

[23] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg,
and C. Kim, “EyeQ: Practical network performance isolation at the
edge,” in Proc. USENIX NSDI, 2013, pp. 297–311.

[24] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. Internet Meas. Conf.,
Nov. 2017, pp. 78–85.

[25] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in Proc. ACM Conf. SIGCOMM, Aug. 2014,
pp. 295–306.

[26] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[27] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, and
V. Josifovski, “Scaling distributed machine learning with the parameter
server,” in Proc. USENIX OSDI, 2014, pp. 583–598.

[28] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” in Proc. ACM
SIGCOMM, 2012, pp. 139–150.

[29] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proc. ACM EuroSys, 2007, pp. 59–72.

[30] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, and
G. R. Ganger, “Safe and effective fine-grained TCP retransmissions for
datacenter communication,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 4, pp. 303–314, 2009.

[31] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global internet,” IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[32] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, archi-
tecture, algorithms, performance,” in Proc. IEEE INFOCOM, 2004,
pp. 2490–2501.

[33] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proc. 25th IEEE
Int. Conf. Comput. Commun. (INFOCOM), Apr. 2006, pp. 1–12.

[34] IEEE Approved Draft Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems, IEEE Stan-
dard 1588-2019, 2019.

[35] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in Proc. USENIX NSDI, 2019, pp. 1–16.

[36] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell,
Feedback Control of Dynamic Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 2001.

[37] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, and M. Rosenblum,
“Exploiting a natural network effect for scalable, fine-grained clock
synchronization,” in Proc. USENIX NSDI, 2018, pp. 81–94.

[38] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild, and D. Platt,
“Sundial: Fault-tolerant clock synchronization for datacenters,” in Proc.
USENIX OSDI, 2020, pp. 1171–1186.

[39] S. Liu, A. Ghalayini, M. Alizadeh, B. Prabhakar, M. Rosenblum, and
A. Sivaraman, “Breaking the transience-equilibrium Nexus: A new
approach to datacenter packet transport,” in Proc. USENIX NSDI, 2021,
pp. 47–63.

[40] P. Taheri et al., “RoCC: Robust congestion control for RDMA,” in Proc.
ACM CoNEXT, 2020, pp. 17–30.

[41] M. Alizadeh, A. Kabbani, B. Atikoglu, and B. Prabhakar, “Stability
analysis of QCN: The averaging principle,” in Proc. ACM SIGMETRICS,
2011, pp. 49–60.

[42] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, “A control theoretic
analysis of RED,” in Proc. IEEE Conf. Comput. Commun. 20th Annu.
Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), Apr. 2001,
pp. 1510–1519.

[43] R. Pan et al., “PIE: A lightweight control scheme to address the
bufferbloat problem,” in Proc. IEEE 14th Int. Conf. High Perform.
Switching Routing (HPSR), Jul. 2013, pp. 148–155.

[44] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. Y. Pawar, “A review
of PID control, tuning methods and applications,” Int. J. Dyn. Control,
vol. 9, pp. 818–827, Jul. 2020.

[45] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in Proc.
ACM SIGCOMM, 2018, pp. 221–235.

[46] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proc. Conf. ACM Special Interest Group
Data Commun., Aug. 2017, pp. 239–252.

[47] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or delay: Lessons
learnt from analysis of DCQCN and TIMELY,” in Proc. ACM CoNEXT,
2016, pp. 313–327.

[48] Homa Simulation. Accessed: Apr. 10, 2021. [Online]. Available:
https://github.com/PlatformLab/HomaSimulation/

[49] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understand-
ing TCP incast throughput collapse in datacenter networks,” in Proc. 1st
ACM Workshop Res. Enterprise Netw. (WREN), 2009, pp. 73–82.

[50] DPDK. Accessed: Apr. 10, 2021. [Online]. Available: https://www.
dpdk.org/

[51] E. Jeong et al., “mTCP: A highly scalable user-level TCP stack for
multicore systems,” in Proc. USENIX NSDI, 2014, pp. 489–502.

[52] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, and
B. Montazeri, “Swift: Delay is simple and effective for congestion
control in the datacenter,” in Proc. ACM SIGCOMM, 2020, pp. 514–528.

[53] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. ACM CoNEXT, 2015, pp. 1–12.

[54] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact
of packet spraying in data center networks,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 2130–2138.

[55] S. Hu et al., “Aeolus: A building block for proactive transport in
datacenters,” in Proc. ACM SIGCOMM, 2020, pp. 422–434.

[56] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” in Proc. Conf. Appl., Tech-
nol., Architectures, Protocols Comput. Commun. (SIGCOMM), 2002,
pp. 89–102.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: RCC: ENABLING RECEIVER-DRIVEN RDMA CONGESTION CONTROL 117

[57] N. Dukkipati, “RCP: Congestion control to make flows complete
quickly,” Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford,
CA, USA, 2006.

[58] J. Zhang, F. Ren, R. Shu, and P. Cheng, “TFC: Token flow control in
data center networks,” in Proc. ACM EuroSys, 2016, pp. 1–14.

[59] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and
T. E. Anderson, “Backpressure flow control,” in Proc. USENIX NSDI,
2022, pp. 779–805.

Jiao Zhang (Senior Member, IEEE) received the
bachelor’s degree from the School of Computer
Science and Technology, Beijing University of Posts
and Telecommunications (BUPT), China, in July
2008, and the Ph.D. degree from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China, in July 2014. From August 2012 to
August 2013, she was a Visiting Student with the
Networking Group of ICSI, UC Berkeley. She is
currently an Associate Professor with the School
of Information and Communication Engineering,

BUPT. Her research interests mainly include data center networking, network
function virtualization, and future internet architecture.

Xiaolong Zhong (Graduate Student Member, IEEE)
received the bachelor’s degree from the School
of Information and Communication Engineering,
Beijing University of Posts and Telecommunica-
tions, China, where he is currently pursuing the
master’s degree with the State Key Laboratory of
Networking and Switching Technology. His current
research interests include data center networking and
software-defined networking.

Zirui Wan received the bachelor’s degree from the
School of Information and Communication Engi-
neering, Beijing University of Posts and Telecom-
munications, China, where he is currently pursuing
the Ph.D. degree with the State Key Laboratory of
Networking and Switching Technology. His current
research interests include data center networking and
software-defined networking.

Yu Tian is currently an Associate Professor with
the School of Science, Beijing University of Posts
and Telecommunications. She is major in the theory
of dynamics system and differential equations, geo-
metric singular perturbation theory, and variational
approach.

Tian Pan (Senior Member, IEEE) received the
Ph.D. degree from the Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing,
China, in 2015. He was a Post-Doctoral Researcher
with the Beijing University of Posts and Telecom-
munications (BUPT) from 2015 to 2017, where he
is currently an Associate Professor with the School
of Information and Communication Engineering.
His research interests include router architecture,
software-defined networking, programmable data
plane, satellite networks, and machine learning for
network applications.

Tao Huang (Senior Member, IEEE) received the
B.S. degree in communication engineering from
Nankai University, Tianjin, China, in 2002, and the
M.S. and Ph.D. degrees in communication and infor-
mation system from the Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2004 and 2007, respectively. He is currently a
Professor with BUPT. His current research interests
include network architecture, routing and forward-
ing, and network virtualization.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 03,2023 at 02:57:25 UTC from IEEE Xplore. Restrictions apply.

