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Abstract—The rapid growth of short video users has brought
high traffic costs to content providers. Saving Content Distri-
bution Network (CDN) costs while maintaining users’ playback
Quality of Experience (QoE) is a significant problem for major
short video platforms like Douyin (the Chinese counterpart of
TikTok). Two commonly utilized cost-saving methods: PCDN
(peer-to-peer CDN, fetching data from multiple low-cost but low-
bandwidth edge devices with a multipath transmission protocol)
and preloading control (minimizing unnecessary future playing
data by downloading videos in segmented data ranges), each may
hurt users’ experience respectively. Worse still, both methods
combined have a synergistic negative effect over QoE. In this
paper, we focus on experiences, algorithms, and prospects to
solve this cost-QoE dilemma. We first introduce Douyin’s current
PCDN multipath architecture and then review learning-based
preloading techniques. Second, based on Reinforcement Learning
(RL), we propose a Multipath-aware Smart Preloading algorithm,
which consists of three schemes: one to decide the best size of the
next range of preloaded data, another to design a water level valve
algorithm that prioritizes preloading between currently playing
video’s unfinished data and the next video’s beginning data, and
the last one to determine the bitrate level of the next video.
Douyin’s anonymous user feedback shows our Smart Preloading
algorithm reduces traffic waste by ∼26% while ensuring QoE.
Third, we analyze and outlook the future of video systems,
including trends in PCDN and other open issues.

Index Terms—Preloading, Reinforcement Learning, PCDN,
Multipath transmission, Short video

I. INTRODUCTION

As a novel form of content interaction, short videos have
garnered a substantial user base since their inception [1].
For instance, Douyin has over 1 billion daily active users
and an annual traffic cost exceeding 6 billion RMB. To
ensure smooth playback for users, content providers typically
distribute video data through CDN [2]. The high traffic costs
have necessitated the transformation of the video transmission
architecture to PCDN, a low-cost and high-quality content
distribution network service built by the massive fragmented
idle resources of the edge network.

Preloading control is another major cost-saving method.
Preloading is necessary for a better user experience in short
video playback, which usually involves in-video preloading
and cross-video preloading. In-video preloading downloads
future data of the current playing video for users to manually
drag the progress bar to a farther position, and cross-video
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preloading enables advanced downloads of recommended
videos while playing the current video, facilitating faster
and smoother transitions between videos. In Douyin’s early
experience, the entire video was preloaded to ensure optimal
user experience. However, this approach resulted in wasted
traffic if users slid away or exited from watching the current
video. Downloading a small piece of data behind the user’s
viewing position instead of the entire video can significantly
reduce costs but may compromise QoE. Each preloading
segment of a video is called a range in this paper. Preloading
control is a mechanism for managing the balance between
preloaded data waste and user experience, which requires
careful management of range size in both in-video and cross-
video scenarios. However, optimizing preloading control can
be challenging [3] due to the elusive nature of user behavior
and the dynamic network conditions that make it difficult
to determine appropriate preload sizes [4]. In PCDN, this
challenge is compounded by path heterogeneity and device
instability.

With the development of Artificial Intelligence (AI), ex-
isting work has used Reinforcement Learning (RL) in the
preloading control due to its far-sightedness and ability to
tackle intricate problems. Wen hu et al. [5] use Deep Re-
inforcement Learning (DRL) [6] to preload TV series to
AP nodes. LiveClip [7] uses DRL to formulate an adaptive
short video streaming algorithm. Alfie [8] decides whether
to preload the next chunk that is not in the buffer based
on RL. With our experience, we find three problems in the
existing work: Firstly, most existing research focuses on long
videos and fails to consider the unique characteristics of
short video scroll events. Secondly, they default to single-
path transmission without considering the heterogeneity of
multipath. Thirdly, the preloaded size of existing work is
inaccurate. In recent years, content providers mostly adopted
self-developed transmission protocols. For example, Douyin
has developed a stream-pull protocol based on UDP. Therefore,
range can be split into finer sizes rather than being limited to
the chunk [9]. Fourthly, different videos that a user watches are
downloaded from different devices in PCDN, and thus follow
different paths. It is difficult to predict the network conditions
for preloading the next video while the user is watching the
current video, creating additional challenges for preloading.

As one of the world’s leading short video services, we make
three key observations: firstly, users are more likely to swipe
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Fig. 1: Transformation of CDN to PCDN transmission archi-
tecture.

or exit during watching short videos. Secondly, rebuffering
is particularly intolerable for users when it comes to short
videos. Thirdly, unnecessary future playback data can result
in higher costs than anticipated. Thus, in this paper, we focus
on experiences, algorithms, and prospects to solve this cost-
QoE dilemma. We present Douyin’s PCDN data transmission
architecture (§II) and then review learning-based preloading
techniques (§III). Farther, we propose a Multipath Smart
Preloading algorithm based on RL in PCDN named PreOpt.
It decides the range size during playback, aiming to saves
costs as much as possible while ensuring QoE (§IV-A). In
addition, we design a water level valve algorithm to solve
the conflict of preloading multiple video ranges. We notice
that changing video bitrates during playback is expensive in
PCDN architecture. So we give the video a chance to switch
bitrates according to multipath characteristics (§IV-B). Real-
world experiments show that our algorithm reduces traffic
waste by ∼26% while ensuring QoE. Finally, we analyze and
outlook the future of multipath video transmission architecture,
including trends in PCDN and other open issues, aiming to
promote the future development of video architecture.

The main contributions of this paper are:
• We give a detailed description of Douyin’s PCDN –

a multipath short video transmission architecture using
fragmented edge resources.

• We propose a Multipath Smart Preloading algorithm
based on RL in PCDN to solve this cost-QoE dilemma.

• We create a water level valve algorithm to solve the
conflict of multi-video preloading conflict.

• We analyze and outlook the future of multipath video
transmission architecture, including trends in PCDN
and other open issues.

In what follows, we first introduce the Douyin’s PCDN and
video preloading in §II. In §IV, we propose a Multipath-aware
Smart Preloading algorithm, which consist of three schemes.
In §V, we rely on Douyin’s PCDN to implement the algorithm
and present evaluation results. We analyze and outlook the
future of multipath video transmission architecture in §VI.

II. PCDN – A MULTIPATH SHORT VIDEO PLAYBACK
ARCHITECTURE

In this section, we first describe the multipath transmission
architecture and then analyze its preloading problem.
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A. The Multipath Video Transmission Architecture

Short videos, a form of user-generated content shared on
online social platforms, are presented to users in a sliding
manner [10] and have gained significant success in the mobile
video market due to their ability to cater to fragmented user
needs and provide large amounts of information in short
periods of time. Due to the increasing number of users, content
providers are facing significant traffic costs for CDN network
transmission of video. As shown in the Figure 1, the key idea
of CDN is to distribute the source content to the edge server
closest to users and utilize load balancing technology to reduce
the response time of user access. The deployment of CDN
relies on operators, Internet data centers, service providers, and
other factors. While providing stable high-speed bandwidth,
CDN comes at a high price.

To reduce cost, Douyin has integrated P2P technology [11]
with CDN to build PCDN content distribution network. PCDN
exploits the fragmented idle resources of the edge network
to build a multipath video distribution system, as illustrated
in Figure 1. As depicted in Figure 2, the PCDN system is
comprised of three components: the Software Development
Kit (SDK), the Device, and the Tracker. The SDK is integrated
into the mobile app and is responsible for downloading video
playback data for users. When the SDK requires video data,
it queries the Tracker for available device nodes from which
it can download the video. The SDK then requests the video
data in parallel from multiple devices that correspond to the
available nodes. Therefore, each video for a user in PCDN
is downloaded from different devices. The Tracker stores the
index mapping from files to devices, and distributes video
data to devices according to the popularity of the video.
In addition, the Tracker also performs data integrity checks.
The Device strives to cover enough videos in advance and
transmit the data to the SDK after receiving the request. The
Device component comprises idle mainframes or edge access
points, which are low-cost but low-bandwidth with a multipath
transmission protocol based on UDP. Because it is challenging
for a single device node to provide stable and adequate
bandwidth to support video playback for a user, PCDN utilizes
multiple device nodes to serve each user, thereby enhancing
the aggregated bandwidth and ensuring seamless playback.
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B. Video Preloading in PCDN Architecture

Due to the characteristics of short videos, users tend to
swipe or skip to the next video at any time during playback
[4]. To ensure optimal QoE for users, apps preload the
current video and videos in the recommendation queue. If
the user slides away, the downloaded but unwatched data
becomes wasted, increasing the useless overhead of the con-
tent provider. As shown in Figure 3, our analysis of data
collected from Douyin demonstrates that using a split-range
approach (with a fixed 15-second duration for each range)
saves approximately ∼12% on average in traffic cost compared
to preloading the entire video. Reducing traffic waste while
ensuring optimal Quality of Experience (QoE) for users is a
challenging task due to conflicting factors. One such factor
is the diverse viewing behavior of users, which is influenced
by numerous factors that are difficult to model accurately,
making it impossible to predict the exact amount of downloads
required. Preloading a range that is too small can result in
video playback rebuffering when the network quality suddenly
deteriorates. Another factor is predicting the download time
of data is even more challenging due to the heterogeneity
of multipath in the PCDN system. Moreover, different videos
that a user watches are downloaded from different devices in
PCDN, and thus follow different paths. It is difficult to predict
the network conditions for preloading the next video while
the user is watching the current video. These factors make it
difficult to determine the appropriate order and amount of data
to preload.

III. RELATED WORK

Recently, with the rapid development of Artificial Intelli-
gence (AI) technology, researchers have started to explore
the integration of AI and video playback systems. In this
section, we review traditional and learning-based preloading
algorithms used in video transmission.

Traditional preloading algorithms: To ensure optimal
QoE, content providers such as Douyin have previously
preloaded entire videos, resulting in significant waste of traffic
costs. Later, a fixed-size range download scheme was derived,
where the video is divided into multiple fixed-length ranges
and the next range is preloaded when the user starts watching
the current range. Another approach is the buffer-based scheme
[12], which stops downloading when the video buffer is full.
This has a similar effect to the fixed range size scheme.
However, traditional preloading algorithms are not flexible
enough [13] and often come at the expense of cost in exchange
for QoE guarantee, resulting in only limited cost reduction.

Learning-based preloading algorithms: LiveClip [7] uses
DRL to develop an adaptive short video streaming policy. It
assumes that a video uses a constant bitrate, so each video
segment has the same size. It uses the A3C [14] algorithm
to decide to download a video segment from 0 to 2 videos
in the recommended queue based on the user’s current status
and download speed. Wen hu et al. [5] use real trajectories to
perform large-scale measurements of users’ AP connections
and TV series watching patterns. They formulate the content
preloading problem as a Markov decision process. It uses
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online learning to preload specific videos to access points to
improve user-watching hit rates. Alfie [8] uses the Proximal
Policy Optimization (PPO) [15] (A RL algorithm) for deciding
whether it is currently necessary to download the next video
chunk that is not in the buffer, based on the current behavior
of the user and the network throughput. The n videos in Alfie
may have different preloading progress. Incendio [16] is an in-
novative SABR (short video adaptive bitrate ) framework that
utilizes Multi-Agent Reinforcement Learning (MARL) with
Expert Guidance. It separates the decision-making process for
video ID and video bitrate into buffer management and bitrate
adaptation agents, respectively.

In summary, the above learning-based preloading algorithms
are not suitable for the preloading control problem in PCDN.
Firstly, they assume that all videos in a user session are
downloaded from the same CDN, and therefore use network
parameters obtained from past downloads when preloading
different videos in the queue. However, in PCDN, each
video may be located on different devices, and the network
parameters of the current video cannot represent any other
video. Additionally, maintaining connection states for multiple
videos, as in the aforementioned algorithms, would incur
significant overhead for mobile devices, given that each video
in PCDN transfers data from multiple devices in parallel.
Therefore, implementing a preloading control algorithm that
achieves a balance between QoE and cost, perfectly adapted
to the PCDN architecture, requires addressing the following
challenges: 1) How to anticipate the transmission path status of
the recommended video queue in advance? 2) How to integrate
the network parameters of multiple paths into the network state
space of RL? 3) How to predict the user’s sliding probability?

Given the above complications, we use DRL to solve the
preloading problem in PCDN multipath video transmission.
DRL can determine the next range size based on empirical
information through a long-term optimization approach. So
the algorithm can combine many factors to decide on a more
accurate result. Additionally, the paper addresses the charac-
teristics of short video sliding and the PCDN transmission
architecture to predict network state information and designs
the Water Valve Algorithm to solve range download conflicts.
Details in §IV.

IV. DESIGN

Figure 5 depicts the training and video downloading pro-
cess. It consists primarily of three components, and the follow-
ing sections will provide detailed descriptions of these three
modules.
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A. Model Formalization
1) State: The state is the environmental information that is

input to the agent. We divide the input information into three
parts based on the factors influencing the range size decision:
network state, user behavior, and playback state.

• Network state: Network fluctuations affect whether the
next range will rebuffer. We denote the network state
as Nt = [bt, rt, lt], which are the throughput, RTT, and
loss rate at time t, respectively. Where throughput is the
download speed of the multi-transmission task aggregated
from all the connections, the loss rate is the number
of packets lost by the task divided by the number of
packets sent by the task, and RTT is weighted together
by the throughput of each connection. The network state
is combined the conditions of all the links.

• User behavior: Another key factor influencing range size
is user-watching behavior. We predict the probability of
user swiping by Ut = [ot, dt]. ot is the recommenda-
tion score of the video given by the recommendation
algorithm, which is used to represent the user’s level of
interest in the current video. dt is the historical swiping
rate of the user, which has been accumulated statistically.

• Playback state: The playback information input Pt =
[et,mt] includes the bitrate et of the video and the
remaining supportable watching time mt of the current
range at time t.

2) Action: The action at epoch t is the length of time
supported by range, in seconds.

3) Reward: For short videos, the main factors affecting
QoE are clarity and rebuffering. The cost is the traffic spend.
To sum up, the reward of rangei is Rt = w1 · bitratei −w2 ·
rebufferi − w3 · rangei−1 remain − w4 · traffic usage.
rangei−1 remain is the undownloaded part of the previous
range. At the beginning of a new range, we lack information
about the rebuffering situation. Therefore, we use the part of
the current range that has not been downloaded to replace it
that tends to download the next range in the previous range to
ensure smooth playback. Additionally, we use the duration of
the previous range as a penalty item in the reward function to
prevent the algorithm from making extreme decisions.

4) Learning Algorithm: On the left side of Figure 5, we
utilize the Proximal Policy Optimization (PPO) algorithm to
train the policy. PPO is a gradient descent algorithm based
on the Actor-Critic network, which uniquely employs the
CLIP function to prevent policy fluctuations caused by large
learning steps. In the preloading problem, the user’s previous
behavior provides valuable information for determining the
current range size. However, conventional neural networks
lack memory functions. To address this, we train the input
using the Long Short-Term Memory (LSTM) Recurrent Neural
Network algorithm as a representative network.

During video playback, the DRL model is utilized to
determine and preload the size of the next range whenever
the user begins watching a range.

B. Water Valve Algorithm resolves conflicts in cross-video
preloading.

Because short video playback involves sliding, preloading
control must consider preloading videos from the recom-
mendation queue. However, preloading multiple videos from
the queue can result in maintaining too many connection
states on mobile devices in PCDN, leading to higher energy
consumption and costs (maintaining 20 links states results
in a 2.5% increase in battery drain). We have observed that
during short video playback, users can only slide through
videos in the order presented in the recommendation queue
and will pause on the next video for a few seconds to decide
whether to continue watching or not. Therefore, we simplify
the problem of preloading videos from the recommendation
queue by preloading the first range of the next video at the
beginning of the current video, ensuring the smooth playback
of videos. However, downloading two ranges at the same time
can confuse the DRL model. In the following sections, we will
describe in detail the problem of range download conflicts and
our proposed solutions.

Cross-video Range Download Conflict: As mentioned
earlier, preloading the first range of two videos is necessary at
the beginning of a video. However, downloading two ranges at
the same time can lead to competition for the user’s bandwidth.
The network state parameters used by the DRL model to
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determine range size in previous decisions being incorrect can
cause both ranges to fail to download successfully, leading to
conflicts.

Water valve algorithm: We conceptualize the user’s
watching position as a water valve, and our algorithm makes
corresponding decisions based on its movement. As shown
in Figure 5, Range1 already exists due to the preloading of
the previous video when the user starts watching V ideo1.
If V ideo1‘s Range1 has not finished downloading at this
point, we prioritize finishing its download. Meanwhile, our
model determines the size of V ideo1’s Range2 and V ideo2’s
Range1, and the algorithm chooses how to download these
two video ranges.

We use the retention probability generated by the rec-
ommendation algorithm to choose the next action. Fig. 4
shows that Douyin’s retention probability prediction has high
accuracy and recall rates, making it reliable. If the user’s
retention probability is less than a threshold η, algorithm
prioritizes downloading V ideo2’s Range1 as the next range.
At the same time, the water valve moves backward as the user
watches. When the water level valve reaches the point where
the remaining watching time of V ideo1’s Range1 is equal to
the download time of V ideo1’s Range2, and the user has not
jumped to V ideo2 yet, we jump back to download V ideo1’s
Range2. Otherwise, we download V ideo1’s Range2 when
V ideo2’s Range1 has finished downloading. We calculate the
download time of a range by dividing the total download
rate by its size and the smooth RTT. If the user’s retention
probability is higher than η, we first download V ideo1’s
Range2 and then download V ideo2’s Range1. If the user
has already watched V ideo1’s Range2 and V ideo2’s Range1
has not finished downloading, we follow the current pattern
for the next range.

Establishing connections to obtain path information:
One challenge with the water valve algorithm is the need for
path information for V ideo2 when deciding its Range1. In a
PCDN system, different files are likely to be stored on sep-
arate devices, resulting in distinct network states for V ideo2
compared to those obtained for V ideo1 (§III). However, it is
worth noting that in the PCDN system, the use of multipath
is intended to increase the aggregated bandwidth, with the
bottleneck most likely to be on the user side. To address this
challenge, we establish connections with V ideo2’s devices
before model decides the range size to obtain information,
such as RTT. We then combine this data with the throughput
derived from V ideo1 to determine the appropriate size for
V ideo2’s Range1. By taking this approach, we can make
informed decisions about range size and ensure that the PCDN
system efficiently utilizes its network resources.

C. Video bitrate adjustment

In the PCDN system, a video determines its bitrate at the
beginning of the transmission. Given that different bitrate files
of a video may be stored on different device nodes, modifying
the bitrate requires re-querying the nodes and establishing new
connections, which results in additional time and resource
overheads. As such, the video only connects with devices once

the bitrate is determined. The PCDN determines the video
bitrate based on its speed. However, in the above algorithm, the
bitrate of V ideo2 can only be decided based on the speed of
V ideo1. To reduce the impact on subsequent video playback,
we have designed a range comparison algorithm that allows
the video to change its bitrate. When V ideo2 is connected, we
obtain new path information to determine the size of V ideo2’s
Range1. If the size of Range1 is less than the threshold (3s
duration), it indicates that the network is unable to support the
current bitrate. In such cases, we adjust the bitrate downward
by one level if the watchable time of the range is between 1
and 3 seconds. If the watchable time of the range is less than
1 second, we adjust the bitrate downward by two levels. This
algorithm enables videos to adjust their bitrates dynamically,
thereby providing users with a seamless and uninterrupted
viewing experience.

V. EVALUATION

Evaluation setting: We rely on Douyin’s PCDN to imple-
ment PreOpt and collect user data. Approximately 100,000
Douyin users updated PreOpt and participated in an online
experiment, generating millions of video data. Before using
the model, we trained the agent over 1000000 epochs under
different scenarios, which took about 24 hours. And the model
has been refined among real users online for nearly three
months. The retention probability threshold (η) is set at 30%.
Based on online experience, this value has proven to strike
a good balance. We also included two representative works,
LiveClip (LC) and AIfile, which use RL-based preloading, in
the experiment. A fixed range preloading strategy was used as
a comparison. In the results, the values of 2s, 5s, 10s, and 15s
represent the size of the fixed range.

Results: We used the approach in [13] to calculate QoE,
which involves subtracting the rebuffering rate from the bitrate
in our paper. Fig. 6a displays the average QoE for each video
in the online experiment. Compared to other strategies, PreOpt
improved QoE by 3%∼80%. Figure 6b shows the rebuffering
rate, a key performance indicator for short videos. Fig. 6c
displays the average bandwidth waste rate for each video.
We observed that smaller range sizes result in higher rebuffer
rates. If the range is too small, rebuffering time will be too
long, and video playback will fail. For example, the strategy
with a range size of 2s has the lowest waste rate but high
buffering rate. However, if the range size is too large, more
traffic will be wasted. The RL-based algorithm we designed
balances these two aspects well because the RL-agent can take
multiple factors into consideration. PreOpt reduced buffering
rate by 14%∼80% while reducing waste rate by 2%∼26%.
In addition, prior to the final presentation of the results, each
component underwent its own evolutionary process. When the
Water Valve algorithm was not present, relying solely on DRL
for range size decision led to a reduction of approximately
20% in waste rate while maintaining a lower buffering ratio.
The introduction of the Water Valve algorithm further de-
creased the buffering ratio by enabling preloading of the next
video, resulting in optimal QoE maintenance at a threshold
of 30%. Setting the threshold too high or too low may cause
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rebuffering in the current or next video. Based on our online
experience, we find that setting the threshold to 30% yields
the best results.

VI. FUTURE WORK AND CONCLUSION

Multipath video transmission is still in an embryonic stage
and there is huge potential for development. The huge cost
saving and resource utilization of multipath video transmission
has attracted wide attention from the industry. However, there
are still many points worth research in the PCDN architecture
in addition to the adjustment of range size. The first is the
file distribution mechanism. Since multiple small devices are
used to store files in PCDN, it is very important to allocate the
file placement. According to the popularity, location and other
information, the reasonable allocation of files is advantageous
to the saving of storage space. The second is the problem of
selecting the devices to download video. The same video may
be stored in many devices. A poor connection may affect the
download of the entire file. The third is the data scheduling.
Due to the heterogeneity of the paths there will be data
disorder, thus causing queue head blocking. In conclusion,
there are still many issues worthy of optimization in the PCDN
architecture, which still need to be researched in the future.

In this paper, we introduce PCDN, a multipath video trans-
mission architecture that leverages edge residual resources to
store and transfer videos, thereby saving content providers
significant traffic costs. We propose a range size adjustment
algorithm based on DRL in the PCDN architecture to enhance
video watching quality and user experience while reduce cost.
The algorithm uses the user’s viewing position as a water
level valve and makes corresponding decisions based on its
movement. It also considers video preloading and bitrate ad-
justment to optimize video download and playback efficiency.
Our algorithm achieves good performance in experiments and
provides useful references for future research and development
in the field of video streaming transmission technology and
systems.
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Fig. 3: The daily cost saving ratio after using the split-range download method.
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