
PACC: Proactive and Accurate Congestion
Feedback for RDMA Congestion Control

Xiaolong Zhong1, Jiao Zhang12∗, Yali Zhang3, Zixuan Guan3, Zirui Wan1
1State Key Laboratory of Networking and Switching Technology, BUPT, Beijing 100876, China

2Purple Mountain Laboratories, Nanjing 211111, China 3Huawei Technologies Co., Ltd, Beijing 100084, China
1{xlzhong, jiaozhang, wanzr}@bupt.edu.cn 3{zhangyali369, guanzixuan}@huawei.com

Abstract—The rapid upgrade of link speed and the prosperity
of new applications in data center networks (DCNs) lead to
a rigorous demand for ultra-low latency and high throughput.
To mitigate the overhead of traditional software-based packet
processing at end-hosts, RDMA (Remote Direct Memory Access)
has been widely adopted in DCNs. Particularly, congestion
control (CC) mechanisms designed for RDMA have attracted
much attention to avoid performance deterioration when packets
lose. However, through comprehensive analysis, we found that
existing RDMA CC schemes have limitations of a sluggish
response to congestion and unawareness of tiny microbursts due
to the long end-to-end control loop. In this paper, we propose
PACC, a switch-driven RDMA CC algorithm with easy de-
ployability. PACC is driven by PI controller-based computation,
threshold-based flow discrimination and weight-based allocation
at the switch. It leverages real-time queue length to generate
accurate congestion feedback proactively and piggybacks it to
the corresponding source without modification to end-hosts. We
theoretically analyze the stability and key parameter settings of
PACC. Then, we conduct both micro-benchmark and large-scale
simulations to evaluate the performance of PACC. The results
show that PACC achieves fairness, fast reaction, high throughput,
and 6∼69% lower FCT (Flow Completion Time) than DCQCN,
TIMELY and HPCC.

Index Terms—Data Center; RDMA; Congestion Control;
Switch-driven

I. INTRODUCTION

Over the last decade, the link speed in data centers has
grown fast from 10Gbps, 100Gbps to upcoming 200Gbps. This
leads to a trend to run various OLDI (OnLine Data-Intensive)
applications, distributed computation services and machine
learning training tasks on top of the data center fabrics [1].
Both throughput-sensitive and latency-sensitive applications
relentlessly demand for ultra-low latency, high throughput and
high CPU efficiency simultaneously. As a consequence, cloud
providers and data center operators began introducing RDMA
technology as the fundamental network component to alleviate
the overhead of software-based processing at end-hosts [4].

RoCEv2 (RDMA over Converged Ethernet version 2) is
a standard to deploy RDMA for Ethernet-based DCN [2].
Due to limited hardware resources in RNIC (RDMA NIC),
RoCEv2 leverages a simple go-back retransmission mecha-
nism to recover dropped packets. This simple packet recovery
mechanism causes dramatic throughput degradation even when
the packets loss ratio is low [4]. Thus, PFC (Priority Flow

∗Corresponding author: Jiao Zhang

Control) [3] is employed in RoCEv2 to ensure the network
lossless. However, as a hop-by-hop flow control mechanism
working on the coarse-grained port/port+priority level, PFC
may lead to potential problems. For instance, issues like Head-
of-Line blocking, deadlock and PAUSE frame storm would
probably exacerbate the performance of the whole domain.
To essentially prevent the activation of PFC, enhanced CC
mechanisms for RDMA-enabled DCNs have attracted much
attention in recent years.

At present, there are mainly two types of RDMA CC
schemes according to the entity playing the pivotal role,
sender-driven [4]–[6] and switch-driven [9] solutions. Sender-
driven solutions like DCQCN [4], TIMELY [5] and HPCC [6]
passively adjust sending rate/window based on the information
carried by end-to-end congestion signals. Specifically, the
above three use ECN (Explicit Congestion Notification), RTT
(Round Trip Time) and INT (In-band Network Telemetry),
respectively. Among them, DCQCN is the most typical one
and has already been integrated into RNICs as a default
mechanism by vendors like Mellanox [7]. However, though
widely used in production, DCQCN still encounters various
issues relative to environment or operation. Specifically, the
end-to-end design makes any unit along the path probably
problematic, such as ECN-mark threshold tuning at switches,
the adjustment of rate update period, etc. This would bring
performance deterioration especially under bursty traffic. Ac-
tually, we found that all of these three sender-driven schemes
suffer from similar performance problems under specific traffic
patterns even though their designs have little in common
(Section II).

We investigate that the problems of the above mechanisms
roots in the long end-to-end control loop, which gives a
remediation for existing network congestion after at least one
RTT delay. Sluggish response to congestion leads to deep
queues at the bottleneck switch, and subsequent backoffs based
on heuristic mechanisms such as AIMD (Additive-Increase
Multiplicative-Decrease) or MIMD (Multiplicative-Increase
Multiplicative-Decrease) require multiple rounds for conver-
gence after congestion occurs. Moreover, the long control loop
becomes blind when it handles flows that finish within one
RTT [8]. As a consequence, superfluous and obsolete signals
further impede the follow-up transmissions. By reviewing the
observations of existing RDMA CC algorithms, we believe
that a short control loop and effective discrimination of flows

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 2228

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

68
03

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

is necessary for CC in RDMA-enabled data center networks.
But where is the panacea?

Looking back upon the development of transport protocols
in data centers, we found that switch-driven solutions give a
satisfactory answer. As the key component of network inter-
connections, the switch locates inside the fabric and is directly
relative with in-network congestions. With the accurate and
real-time metrics of the overall network and a flexible control
loop range between single-hop and end-to-end delay, it is pos-
sible and desirable to deal with congestion at the switch. The
newly proposed RoCC [9] uses the queue length at switches to
explicitly calculate the fair rate of flows and encapsulate it in
a packet to feed back to the corresponding senders. However,
due to the modifications required on both switches and end-
host NICs, the deployability of RoCC declines as most of
the data center operators and cloud builders are reluctant to
make a forklift upgrade of the whole network [11]. Besides,
the tradeoff between computational accuracy and algorithm
complexity may also downgrade its performance.

Enlightened by the above insights, in this paper, we propose
a switch-driven RDMA CC mechanism with easy deployabil-
ity and better performance, called PACC. PACC proactively
generates accurate congestion feedback at switches and re-
quires no modification to end-hosts. Specifically, PACC is
compatible with DCQCN at end-hosts, while the switch takes
in the real-time queue length for precise computation based on
PI controller and returns back CNPs (Congestion Notification
Packets) opportunely to certain sources. Besides, PACC pro-
vides good fairness among flows under various traffic patterns
with a weight-based feedback allocation scheme.

To offer a reference for easy-to-use system parameter set-
tings, we analyze the stability of PACC based on the control
theory. We then evaluate it by conducting micro-benchmarks
and large-scale simulations based on NS3 implementation.
The results show that PACC can stabilize the queue length
around the reference threshold quickly under different sce-
narios. Moreover, the throughput of both congested and non-
congested flows can be guaranteed without sacrificing fairness.
The results of large-scale simulations with realistic data center
traffic workloads show that PACC achieves 6∼23%, 65∼69%,
9∼12% lower average FCT than DCQCN, TIMELY and
HPCC. Besides, the FCT breakdown of PACC outperforms
the other three schemes under different ranges of flow sizes.

In summary, our key contributions are:

• We analyze the limitations of state-of-the-art RDMA
CC mechanisms and conclude that fast and accurate
congestion feedback from the switch is necessary and
promising for RDMA CC.

• We propose PACC, which leverages PI controller-based
computation, threshold-based flow discrimination and
weight-based allocation at switches to achieve proactive,
accurate and fair feedback between various flows.

• We theoretically analyze the stability of PI controller-
based algorithm used in PACC and give guidance for
parameter settings.

0 200 400 600 800 1000120014001600

Time(us)
0

100
200
300
400
500
600
700

Qu
eu

e
Le

ng
th

(K
B) DCQCN

HPCC
TIMELY
PACC

(a) Queue length at bottleneck

0 200 400 600 800 1000120014001600

Time(us)
0

5

10

15

20

25

Th
ro

ug
hp

ut
(G

bp
s)

DCQCN
HPCC
TIMELY
PACC

(b) Throughput at bottleneck

Fig. 1: Performance of RDMA congestion control schemes.

• We evaluate PACC with both micro-benchmarks
and large-scale simulations compared with DCQCN,
TIMELY and HPCC. The evaluation results show that
PACC achieves rapid response, better fairness, high
throughput, and 6∼69% lower average FCT compared
with DCQCN, TIMELY and HPCC.

II. MOTIVATION

As a switch-driven mechanism based on fast congestion
feedback, PACC is inspired by the defects of the state-of-the-
art RDMA CC algorithms coping with some specific traffic
patterns and the paradigm shift from source-driven to core-
driven [9]. Specifically, the former focuses on the pros and
cons of the final performance of the algorithm, which is closely
related to the industry background of rapid upgrades of data
center infrastructure (link speed, network devices, etc.) in
recent years. The latter concentrates on the design philosophy
of the algorithm, aiming to make the algorithm more concise
and efficient, and is promising in the context of the latest
research results on programmable switches [10]. In general,
PACC is motivated by threefold observations.

1) Slow Response to Congestion: The existing RDMA
CC mechanisms [4]–[6] use advanced signals including ECN,
RTT, and INT to detect congestion and then guide the sender
to adjust its transmission behavior in different ways. DCQCN
determines its rate adjustment mode based on the receiving
event of CNP, while TIMELY and HPCC calculate the sending
rate or window size according to the ACK packets returned by
the receiver. However, since these signals work on an end-to-
end time scale, the long control loop requires at least one RTT
for the sender to perceive and react to congestion. In addition,
the queue built on the bottleneck switch during the backhaul
of congestion signals will also significantly increase network
latency, which will further aggravate congestion.
Experiment results: To illustrate the above issue, we conduct
an NS3 simulation to compare the performance of the three
algorithms with their default parameters in the burst flow sce-
nario. The topology used is a typical FatTree [12], consisting
of 16 Core switches, 20 Agg switches, and 20 ToR (Top of
Rack) switches, with 16 servers connecting to each ToR switch
via 25Gbps links. The links between switches are all 100Gbps
with a 1µs propagation delay, which gives a 12µs maximum
base RTT.

2229
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

Two long-lived flows are generated from two servers under
the same ToR switch at time 0, and their destinations are two
different servers in another ToR switch. After the sending rate
of the two converges, we randomly select 9 servers from 3
ToR switches and synchronously send a flow with 64KB data
to the same receiver of one long flow at 600µs. Fig. 1(a) and
Fig. 1(b) show the queue length and total throughput of the
receiver-side ToR switch, respectively. The queue length peak
at the bottleneck switch of all the three schemes is around
600KB, and keeps growing about 2-3 RTT (24-36µs) before
it begins to drain out, which further slows down the recovery
of throughput. Specifically, with a duration of bursts of about
230µs, HPCC and TIMELY take about 60µs (5× RTT) to
saturate the remaining available bandwidth, while DCQCN
experiences a persistent link under-utilization about 500µs.
Since the burst traffic pattern is dominant in today’s data center
networks [13], it is desirable for a CC scheme to shorten the
control loop to eliminate congestion promptly.

2) Inaccurate CNP Generation in DCQCN: In DCQCN,
it depends on the receiver to decide whether to feed back
CNP to the sender by identifying the ECN-bit in the packets
coming from the switch. Therefore, the rate adjustment at the
sender side is closely related to the CNP generation event.
However, the switch marks passing packets indiscriminately
once the queue length at the egress port exceeds the threshold.
When multiple flows share a bottleneck link, especially when
there are bursty short flows, the generation of CNP based on
ECN marking has problems both when congestion exists and
disappears. On the one hand, the port level marking makes
the number of CNPs fed back to each sender vary greatly,
resulting in unfairness between flows. On the other hand, due
to the long feedback loop, excessive CNPs may continue to
inhibit the subsequent rate increase at the sender, making it
difficult for the residual flows to recover to the expected rate
timely even after the congestion is relieved.
Experiment results: For DCQCN, we use the same settings
as the preceding one to repeat the experiment and record
flow-level events. Fig. 2(a) and Fig. 2(b) depict per-flow
throughput and the number of CNPs received by each sender
during congestion. We record the stable value of throughput
and the counting of CNPs within 600-800µs. The unfairness
of the number of CNPs between long-flow (#1) and short-
flows (#2-10) leads to a significant difference in throughput,
which is more than 60%. Although the initial settings of all
short-flows are exactly the same, the difference of CNPs still
results in the fluctuation of throughput between flows. Besides,
redundant CNPs cause a considerable long gap between ideal
and practical throughput after bursts finish. Intuitively, an
accurate CNP generation scheme is necessary to fix the
drawbacks above.

One might argue that the number of CNPs generated in
DCQCN is related to the ECN marking threshold used by the
switch so that appropriate parameter settings can solve this
problem. However, the adjustment of the ECN threshold is not
easy. Recent studies [14]–[16] have proposed solutions from
multiple perspectives (machine learning, heuristic algorithms,

1 2 3 4 5 6 7 8 9 10
Flow Number(#)

0.0

0.8

1.6

2.4

3.2

4.0

Th
ro

ug
hp

ut
(G

bp
s)

DCQCN PACC

(a) Throughput per flow

1 2 3 4 5 6 7 8 9 10
Flow Number(#)

0

10

20

30

40

50

Nu
m

be
r o

f C
NP

s(
#)

DCQCN PACC

(b) Number of CNPs per flow

Fig. 2: Unfairness caused by inaccurate generation of CNPs
in DCQCN.

0 200 400 600 800 1000 1200

Time(us)
0

3

6

9

12

15

Th
ro

ug
hp

ut
(G

bp
s)

DCQCN
PACC

(a) Throughput of ‘long’ flow

0 200 400 600 800 1000 1200

Time(us)
0

5

10

15

20

25

Th
ro

ug
hp

ut
(G

bp
s) DCQCN

PACC

(b) Throughput of ‘short-long’ flow

Fig. 3: Throughput suppression in congested and non-
congested flows.

etc.), but most of them require additional deployment or
collaboration with other information. On the contrary, taking
the inherent attribute of the switch, queue length, as input,
PACC could realize the conversion from queue length to the
number of CNPs through PI controller and directly feeds back
to the sender to guide accurate rate adjustment, which is fast
and straightforward.

3) Unawareness of Tiny Microbursts: Recent study reveals
that 60%-90% of production workload flows can be finished
in less than one RTT [8], which is also evidenced in reports
of request-reply style applications from Google and Facebook
[17]. Although the duration is extremely short, the accumula-
tion of deep queues at the switch caused by microbursts will
still be regarded as a sign of congestion by the end-to-end
CC mechanism. Consequently, the congestion signal from the
last RTT will guide the behavior adjustment of all senders,
even if it has no contribution to congestion. Correspondingly,
the throughput of both the previous bottleneck link and non-
congested new flows will be significantly suppressed, just as
the congestion still exists.

Experiment results: We also conduct an NS3 simulation
to illustrate this point using the same parameter settings in 1)
but with different flow attributes. Specifically, we adjust the
destinations of two long-lived flows to the same one. After the
30KB bursty flows finish, each sender of microbursts starts a
long-lived flow with different receivers (under the same ToR
switch of previous long flows) at 800us. Thus, there are two
traffic patterns in all (two for ‘long-lived’ and nine for ‘short-
long’) and we select one arbitrary flow from each to illustrate
our observation. Fig. 3(a) and Fig. 3(b) show the throughput

2230
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

Data
Packets

Data
Packets

CNP #
Calculator

CNP
Generator

Flow
Table

Queue Size

Feedback

Allocation

Fig. 4: Overview of PACC design at the switch.

TABLE I: The flow table maintained in PACC switches.

sip/dip txBytes Ncong Ncnp
64bit 32bits 8bits 8bits

of flows with the patterns aforementioned, which reveals the
long recovery time for both transmission behaviors (∼150µs
for ‘long’ flows and ∼350µs for ‘short-long’ flows).

The root cause of the phenomenon that the throughput of
both congested and non-congested flows is suppressed is that
the host is unaware of congestion inside the network. Since
the source passively reacts to the congestion signal from the
network, once the feedback delay of the congestion signal
exceeds the maximum RTT of the network, the rate/window
adjustment at the source end will become meaningless and
harmful. Considering the switch is directly related to the
bottleneck, we believe that distinguishing and handling tiny
microbursts (<1 RTT) at the switch is of great benefit to the
CC algorithm.

Based on the above analysis, we propose PACC, a switch-
driven RDMA CC algorithm, which probes and feeds back
the network congestion more precisely and timelier, and is
compatible with all commercial RDMA NICs that support
DCQCN.

III. DESIGN

The key insight of PACC is to achieve prompt, accurate and
fair congestion feedback for the congested flows. Nevertheless,
there are still two questions to answer before implementation.
First, should we construct a brand-new rate adjustment scheme
at the end-host? Second, how does the switch meet the
goals above with limited resources? In short, with inherited
rate control from DCQCN, PACC combines PI controller-
based, threshold-based and weight-based tricks to perform a
lightweight but effective CC at the switch.

A. Framework of PACC

PACC mainly modifies switches which will be described
in Section III-B in detail. The end-host NICs inherit from
DCQCN without any modification for ease of deployment. The
original DCQCN algorithm consists of three entities including
Reaction Point (RP) at the sender, Congestion Point (CP) at
the switch, and Notification Point (NP) at the receiver. Since
PACC feeds back CNP directly from the switch to the source,
the algorithm at NP can be removed if necessary, and the

algorithm of RP remains unchanged. When receiving a CNP,
RP updates its current rate (RC), target rate (RT) and rate
reduction factor α as follows:

RT = RC

RC = RC(1− α/2)

α = (1− g)α+ g

(1)

where g is a pre-configured constant between 0 and 1. See [4]
for other details.

B. PI Controller-based CNP Generation

Fig. 4 presents an overview of the design of PACC at the
switch, which includes three main components: the calculator
for CNP number computation, the allocator and the generator
for CNPs. Specifically, Algorithm 1 illustrates the overall
process of CNP generation.

In order to achieve proactive and accurate fast congestion
feedback, PACC maintains a flow table as shown in Table
I for every switch port. Each entry includes information for
flow record (sip/dip, txBytes) and indicators for congestion
events (Ncong , Ncnp), where sip and dip is the source and
destination IP address of a flow, respectively. The idea of
identifying a flow by sip/dip pair instead of a five-tuple
comes from the practical implementation of the RDMA NIC
vendors, which is determined by limited hardware resources
along with the programming style of RDMA applications [18].
The initialization and update of the flow table are realized by
a background thread with a period of T (80µs by default). On
receiving a packet, the switch will insert or update the flow
table entry (Line 28-29) according to sip/dip. Once the queue
length at the egress port exceeds the reference threshold (Qth),
the corresponding flow entry of the packet will update the
congestion level represented by Ncong (Line 31). Furthermore,
at the end of the period, all the entries in the flow table
other than sip/dip will be set to 0, and the whole entry will
be deleted if its txBytes is less than Bth to save hardware
resources (Line 33).

1) Computation of the Number of CNPs: Similar to
the update of the flow table, the number of CNPs (Nall) is
calculated periodically through a background thread. With a
classical PI controller, PACC can find the accurate Nall shared
by all the congested flows only with the knowledge of queue
length at the egress port (Line 12) as follows:

Nall(t) = β1 × (Q(t)−Qth) + β2 × (Q(t)−Q(t− T)) (2)

To be specific, in implementation, equation (2) is trans-
formed into the discrete form in Algorithm 1. The proportional
term with deviation from the Qth provides an instantaneous
response to the error extent from the system steady-state, while
the derivative term with the direction of queue change enables
a rapid convergence to the equilibrium. Parameter β1 and β2

determine the weight of these two terms, resulting in different
system stability ranges. Intuitively, PACC will uninterruptedly
feed back CNPs to the sources until the current queue length
(Qcur) is stable at Qth, which indicates all the congested flows
have grabbed their fair share of the bottleneck. Besides, the

2231
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

algorithm performs a boundary check on the calculated Nall
to guarantee its validity (Line 14). And at the end of the
computation, Qold is set to Qcur.

2) Distinguish and Handle Microbursts: To prevent pos-
sible under-throughput caused by micro bursty flows, PACC
will not enter the CNP generation phase immediately after
calculating Nall. It depends on the result of the comparison
between the threshold (Qburst) and the average queue length
(Qavg) to decide whether the calculated Nall will take effect.
Qavg is got by another background thread (Line 24) as follows:

Qavg(t) = w ×Q(t) + (1− w)×Qavg(t− T) (3)

where w is used to perform a weighted averaging on Qavg.
If Qavg < Qburst, we assume all the flows are microbursts

lasting less than one RTT and skip the follow-up procedures
to ensure long-term high throughput. If Qavg > Qburst, PACC
allocates and generates CNPs for congested flows according
to the flow table (Line 17).

3) CNP Allocation Across Flows: The allocation of Nall
among flows is based on the congestion level each flow
experienced. The CNP number of each congested flow (Ncnp)
is the weighted average of Nall based on the number of
congested packets (Ncong) recorded in its flow table entry
(Line 4). The floating-point result is rounded down to ensure
the sending rate will not drop dramatically.

4) CNP Generation: The format of CNPs generated in
PACC stays unchanged with DCQCN, but the encapsulation
and management are controlled by the switch completely.
To enable faster convergence and to avoid missing the CNP
deadline, PACC feeds back CNPs with high priority. Besides,
considering the conflict between practical implementation and
original parameter settings in DCQCN, PACC sends one CNP
to the corresponding sender every 4µs, which is the de facto
standard adopted by most vendors. As a consequence, there
is an upper bound of Ncnp for an arbitrary sender during T .
In particular, PACC maintains a scheduler for each congested
flow to realize pacing-like CNP generation and transmission
with a fixed interval (Line 6). Actually, the scheduler covers
CNP generation in the following two typical scenarios: one is
the continuous congestion caused by long-lived flows, where
Qavg > Qth; the other is the mix of long-lived flows and
bursty flows (>1 RTT), where Qburst < Qavg < Qth. Bene-
fited from Ncong recorded in the flow table, PACC transforms
the CNP generation event into a unified table lookup operation,
which is general and effective.

C. Overhead and Implementation Choice

The key components of PACC at the switch include: (1)
a flow table with flow information (table update and aging),
(2) periodic calculation of Qavg and Nall (timer-based back-
ground thread), (3) CNP allocation across flows (flow table
lookup), and (4) CNP generation and transmission back to the
sources (scheduler-based event).

Each entry in the flow table takes up 21 Bytes, which is
lightweight and affordable for existing commodity switches.
Since the computation of Navg and Nall lies in different

Algorithm 1 PI Controller-based CNP Generation

INPUT: Queue Length Qcur
OUTPUT: Congestion Nontification Packet cnp

1: function CNP ALLOCATION AND GENERATION(Nall)
2: PktAll← Sum(Ncong)
3: for each sip/dip in fTbl do
4: fTbl[sip/dip].Ncnp ← Nall×fTbl[sip/dip].Ncong

PktAll
5: if fTbl[sip/dip].Ncnp 6= 0 then
6: SEND CNP(sip/dip, fTbl[sip/dip].Ncnp)
7: end if
8: end for
9: end function

10:
11: procedure CNP NUMBER COMPUTATION(Qcur)
12: Nall ← β1 × (Qcur −Qth) + β2 × (Qcur −Qold)
13: if Nall ≤ 0 then
14: Nall ← 0
15: else
16: if Qavg > Qburst then
17: CNP ALLOCATION AND GENERATION(Nall)
18: end if
19: end if
20: Qold ← Qcur
21: end procedure
22:
23: procedure COMPUTE AVERAGE QUEUE LENGTH(Qcur)
24: Qavg ← w ×Qcur + (1− w)×Qavg
25: end procedure
26:
27: procedure RECEIVE PACKET(Pkt,Qcur)
28: sip/dip← Pkt.SrcIP |Pkt.DstIP
29: fTbl[sip/dip].txBytes← Add(Pkt.Size)
30: if Qcur > Qth then
31: fTbl[sip/dip].Ncong ← Add(1)
32: end if
33: CLEAR FLOW TABLE(T)
34: end procedure

threads and is shared by all the flows, the computation over-
head is negligible with multithreading processing. Besides, as
the de facto framework for data plane programmability, P4
is supported by most major switch hardware vendors in their
ASICs, the implementation of PACC can smoothly transition
to programmable switches.

IV. THEORETICAL ANALYSIS

In this section, we analyze the stability of the PI controller-
based CNP generation algorithm in PACC based on the control
system theory [19].

A. Model Formulation

Considering N long-lived flows traversing a single bottle-
neck switch port with capacity C, the dynamics of the queue

2232
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

at the switch could be formulated as follows:

dQ(t)

dt
=

N∑
i=1

RiC(t− T)− C (4)

where T and RiC denote the interval of the background thread
and the sending rate in the last update period, respectively.
Besides, after successive rate decrease controlled by accurate
CNPs fed back from the switch, the sending rate of a flow is:

RiC(t+ T) = RiC(t)× (1− αi(t)

2
)N

i
cnp(t−T) (5)

where N i
cnp(t) is the number of CNP allocated for flow i.

Besides, when the system tends to equilibrium, the condition
“α is quite small while Ncnp is particularly large” is true in
most cases [20]. Thus RiC(t + T) can be approximated as
RiC(t)× (1− αi(t)

2 ×N i
cnp(t−T)), which further leads to the

delay differential equation of RiC :

dRiC(t)

dt
= −R

i
C(t)αi(t)

2T
N i
cnp(t− T) (6)

As for the variation of Nall(t) caused by PI adjustment in
Algorithm 1, we take bilinear transformation [9] to convert it
into a continuous one1:

dN i
cnp(t)

dt
=
β1

T
[Q(t)−Qth] + (β2 +

β1

2
)
dQ(t)

dt
(7)

where Qth is the expected queue length at steady state.
Equation (4) indicates the queuing process at the switch,

while (7) captures the evolution of the indirect control signal.
By letting the LHS of equations (4), (6), (7) equal 0, with
the assumption that all flows are synchronized and peak
simultaneously (which is obvious), it is easily verified that
Ncnp, α, Q, and RC do not reach the steady-state until system
satisfies2:

N i
cnp∗ = 0, αi = α ∗ and Q∗ = Qth (8)

RiC∗ =
C

N
(9)

where symbol ∗ represents the value at the fixed points.

B. Derivation of the System Transfer Function

Referring to the linearization and Laplace transformation
method used in [21]–[23], we give the derivation of the system
function for PACC as follows:

To linearize the fluid model around the fixed points repre-
sented in equation (8) and (9), we firstly redefine the right-
hand sides of (4), (6) and (7) by:

f(RC)
.
= NRC(t− T)− C

g(RC , α,Ncnp)
.
= −RC(t)

2T
α(t)Ncnp(t− T)

h(Q, Q̇)
.
=
β1

T
[Q(t)−Qth] + (β2 +

β1

2
)
dQ(t)

dt

(10)

1Since the allocation of CNPs between flows is proportional to Ncnp, the
scaling operation from Nall(t) to N i

cnp(t) has no effect to the stability.
2The derivation of stable value of α is given in appendix.

where Q̇ is the differential of Q.
Evaluating partials at the fixed point (RC∗, α∗, Ncnp∗, Q∗)

of (10) gives:
∂f

∂RC
= N (11)

∂g

∂RC
= −α∗

2
Ncnp∗ = 0

∂g

∂α
= −RC∗

2T
Ncnp∗ = 0

∂g

∂Ncnp
= −RC ∗ α∗

2T

(12)

∂h

∂Q
=
β1

T
∂h

∂Q̇
= β2 +

β1

2

(13)

With the denotions δQ .
= Q − Q∗, δRC

.
= RC − RC∗,

δNcnp
.
= Ncnp − Ncnp∗, we make linearization around the

operation point and obtain:

˙δQ(t) = NδRC(t− T)

˙δRC(t) = −RC ∗ α∗
2T

δNcnp(t− T)

˙δNcnp(t) =
β1

T
δQ(t) + (β2 +

β1

2
) ˙δQ(t)

(14)

Performing the Laplace transform on differential equations
in (14) we get:

Q(s) = N
e−sT

s
RC(s)

RC(s) = −RC ∗ α∗
2sT

Ncnp(s)

Ncnp(s) =
β1

T + (β2 + β1

2)s

s
E(s)

(15)

where E(s) = Q(s)−Qth is the error signal.
Combining functions in (15), we finally get the open-loop

transfer function of the whole system as follows:

G(s) = −K
1 + s

z

s3
e−2sT (16)

where K = Cβ1α∗
2T 2 and z = β1

(β2+
β1
2)T

.

C. Stability Analysis and Control Parameters

According to the Bode Stability Criteria [20], the system is
stable only if the phase margin in the Bode diagram of the
transfer function G(s) is above 0. Fig. 5 shows the variation
of margin phase relative to different (β1, β2) pairs, which
illustrates that a closer pair of (β1, β2) provides a faster
response to the control signal Q(t), but may also lead to a
reduction in stability as β1 grows. In fact, there are still other
ranges for (β1, β2) that can stabilize the system. However,
based on the convenience of operation and the validity of
Ncnp, we believe that the [0,1] interval is more practical. In
general, we take (0.05, 0.1) as the default adjustment factor
of the PI controller in PACC.

2233
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

-60

-40

8 0.02

-20

0

7

20

P
h

a
se

 M
a

rg
in

 (
d

e
g

re
e

)

40

6

60

0.04

80

1

5

2
/

1

4 0.063
2

0.081

Fig. 5: Phase margin as a function of parameter β1 and β2.

Besides, T and Qth also affect the system gain (that is, K in
equation (16)) and the equilibrium point, respectively. Weigh-
ing the response speed, queuing delay and link utilization, we
set T = 80µs, and Qth = T

2 × C based on the bandwidth-
delay product, where C is the egress link bandwidth. For
Qburst, in order to ensure it can effectively distinguish tiny
microbursts, we consider the worst case that congestion occurs
at the sender-side ToR switch and set Qburst = d×C, where
d is the single-hop delay. The threshold for flow table aging
(Bth) is set to the same as Qburst for simplicity.

V. EVALUATION

In this section, we implement PACC in NS3 based on the
open-source in [6] and evaluate it using a combination of
micro-benchmarks and large-scale simulations. Without extra
instruction, the topology used is the same as Section II.

A. Evaluation Setup

Schemes compared: We compare PACC with DCQCN,
TIMELY and HPCC as they are the main CC mechanisms
used in RDMA-enabled data center networks. We use the
open-source implementation of DCQCN, HPCC and TIMELY,
where the last one is implemented based on its algorithm [6].
Parameter settings: For PACC, according to the analysis in
Section IV-C, we set Qth = 125KB, Qburst = Bth = 4KB,
w = 0.9 and (β1, β2) = (0.05, 0.1), respectively. For DCQCN,
TIMELY and HPCC, we use the parameters suggested in cor-
responding papers. Moreover, we also scale the ECN marking
threshold proportional to the link bandwidth suggested in [6]
for DCQCN.
Traffic workloads: In micro-benchmarks, we generate the
same traffic as in Section II. And for large-scale simulations,
we use traffic workloads derived from two publicly avail-
able datacenter traffic traces consisting of throughput-sensitive
large flows (WebSearch traffic [24]) and latency-sensitive
small flows (FB Hadoop traffic [17]) in our simulations. To
mimic various scenarios in a real production data center, we
use Poisson-based flow intervals and different link loads to
construct multiple traffic patterns with random combinations
of senders and receivers.

0 50 100 150 200 250 300 350
Times(ms)

0

5

10

15

20

25

Th
ro

ug
hp

ut
(G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(a) HPCC

0 50 100 150 200 250 300 350
Times(ms)

0

5

10

15

20

25

Th
ro

ug
hp

ut
(G

bp
s) Flow 1

Flow 2
Flow 3
Flow 4

(b) PACC

Fig. 6: PACC achieves fairness.

Performance metrics: The performance of PACC are eval-
uated using the following metrics, (1) bottleneck throughput,
(2) in-network queue length, (3) average FCT and (4) tail FCT.

B. Micro-benchmarks
1) PACC has a fast reaction to the congestion: Fig.

1(a) and Fig. 1(b) depict the queue length and throughput
at the bottleneck link with PACC. The queue stabilizes near
the reference threshold (125KB) after an increase of about
15µs, and the peak decreases significantly compared with the
other three solutions. Moreover, the shorter control loop of
PACC advances the queue’s reduction, thus giving a rapid
convergence to the ideal throughput comparable with HPCC,
which outperforms DCQCN and TIMELY.

2) PACC achieves fairness both in mixed and long flow
scenarios: Fig. 2(a) and Fig. 2(b) show the results of PACC
on per-flow throughput and Ncnp contrast with DCQCN. We
note that PACC realizes a per-flow throughput close to the
ideal fair share (2.5Gbps) during congestion. In addition,
the proportion of the difference between throughput peaks
in the total throughput decreases from 2.83% (0.07/24.72) to
1.21% (0.03/24.85). Due to the precise PI control of PACC
based on Qth, per-flow Ncnp is significantly reduced. This
effectively prevents the continuous decrease of the sending
rate and diminishes the overhead at end-hosts for processing
superfluous CNPs in DCQCN.

We also conduct a micro-benchmark for the comparison of
fairness between long flows using PACC and HPCC1. We use
a dumbbell topology where five servers are connected to a
switch via 25Gbps links, and randomly select four to send a
long flow to the same receiver in turn with an interval of 50ms.
From 200ms, we stop these senders one by one with the same
interval. Fig. 6(a) and Fig. 6(b) show the throughput of flows
in HPCC and PACC, respectively. With the rapid congestion
feedback from the switch and the accurate allocation of Ncnp,
PACC provides better fairness and can quickly throttle or
recover the bottleneck bandwidth when a flow starts or ends.
However, flows in HPCC can not grab the ideal fair share, the
total throughput also suffers under-utilization on account of
the 5% overhead on the INT header [6].

3) PACC handles well with tiny microbursts: Fig. 3(a) and
Fig. 3(b) illustrate the variance of throughput under scenarios

1It can be verified in other literature [9] that HPCC outperforms TIMELY
in fairness oftentimes, so we choose the better one for comparison.

2234
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

0.2 0.4 0.6 0.8
Load

0

2

4

6

8
Av

er
ag

e
FC

T(
m

s)
DCQCN
TIMELY

HPCC
PACC

(a) Average FCT

0.2 0.4 0.6 0.8
Load

0

20

40

60

80

99
th

 p
er

ce
nt

ile
 F

CT
(m

s)

DCQCN
TIMELY

HPCC
PACC

(b) 99th percentile FCT

Fig. 7: Average/99th percentile FCT with WebSearch traffic.

in Section II-1) with PACC. Although the transmission time for
tiny microbursts is less than one RTT (30KB

25Gbps = 9.6µs), with
the accurate discrimination of congestion-contributive flows at
the switch, PACC avoids the continuous low link utilization
caused by the excessively long recovery phase under massive
tiny microbursts. which is pervasive in applications such as
machine learning training, key-value database access, etc [8].

C. Large-scale Simulations

1) Overall performance: Fig. 7 and Fig. 8 show the average
and the 99th percentile FCT of four schemes for WebSearch
traffic and FB Hadoop traffic at different loads. We note that
even under traffic with quite different patterns, PACC always
outperforms other schemes both in the average and the 99th

percentile FCT. Specifically, in the WebSearch traffic, PACC
reduces the overall average FCT by up to 23%, 65% and 9%
compared with DCQCN, TIMELY and HPCC, respectively,
while the results change to 6%, 69% and 12% in FB Hadoop
traffic. The observations for the 99th percentile FCT are
similar to the average FCT under two workloads. Since PACC
proactively feeds back accurate congestion signals from the
switch rapidly for multiple types of flows once the queue
length exceeds the threshold, the FCT of the flows contributed
to the congestion will be reduced accordingly.

2) FCT breakdown based on flow size: By reviewing the
results above, it is not hard to find that although TIMELY
shows the same FCT trend under both workloads, DCQCN and
HPCC has opposite results when traffic varies: HPCC gives a
lower average and tail FCT under WebSearch traffic but is
inferior to DCQCN under FB Hadoop traffic. To explore the
fine-grained performance of four mechanisms, we break down
FCT based on the flow size, as shown in Fig. 9 and Fig. 10.

Unsurprisingly, PACC clearly surpasses DCQCN, TIMELY
and HPCC for all the flow sizes either on the average or
tail FCT regardless of traffic patterns. For DCQCN, with the
increment of flow size, the gap between the long control loop
and ideal transmission time shrinks, thus it gives a desirable
result under long flows. Besides, we note that the performance
of TIMELY degrades drastically as the flow size increases,
which is consistent with its design based on the RTT variation.
The micro views of FCT on small (0 − 100KB) and large
(> 100KB) flows indicate that HPCC usually fails when flow
size is extremely large. This is a consequence of the losing
headroom bandwidth and INT information on data frames for

0.2 0.4 0.6 0.8
Load

0

250

500

750

1000

Av
er

ag
e

FC
T(

us
) DCQCN

TIMELY
HPCC
PACC

(a) Average FCT

0.2 0.4 0.6 0.8
Load

0

10

20

30

40

99
th

 p
er

ce
nt

ile
 F

CT
(m

s)

DCQCN
TIMELY

HPCC
PACC

(b) 99th percentile FCT

Fig. 8: Average/99th percentile FCT with FB Hadoop traffic.

large flows. However, with the help of PI controller-based
feedback generation and flow discrimination at the switch,
PACC is hardly affected by flow size. For short flows in
WebSearch traffic, PACC reduces the average and tail FCT of
the best of the remaining three schemes by up to 3% and 8%,
respectively. As for long flows, the improvement respectively
are 6% and 7%.

VI. RELATED WORK

CC is an enduring topic in data centers, and a plethora of
novel proposals have emerged over the last decade. Here we
briefly introduce some closely related work from three aspects.

Reactive Congestion Control: The control entity of this
type of CC is generally the sender side of the data transmis-
sion (i.e., sender-driven). They passively adjust flow rate or
window size according to various feedback signals from the
congested path. Both DCTCP [24] and DCQCN [4] react to
ECN marks. TIMELY [5] and Swift [25] are two general RTT-
based CC mechanisms for DCN. HPCC [6] relies on accurate
link load information offered by in-network telemetry (INT)
to resize sending windows at sources. However, the intrinsic
long end-to-end control loop in reactive CC algorithms may
fail to cope with instantaneous abnormal traffic patterns and
eventually lead to severe performance degradation [26].

Proactive Congestion Control: Proactive algorithms ex-
plicitly calculate the optimal bandwidth/token/credit allocation
for each sender beforehand to meet the demanding application-
level requirements. 1) Switch-driven solutions measure in-
network congestion accurately and directly send key informa-
tion to the source. XCP [27] and RCP [28] adjust the window
size information in the packet header and calculate each link’s
fair rate, respectively. TFC [29] uses a token-based bandwidth
allocation scheme based on the number of active flows in
each time interval. RoCC [9] uses a queue-length-based PI
controller at the switch to proactively feed back accurately
calculated fair rate to senders promptly. 2) Receiver-driven
solutions like ExpressPass [30] and NDP [31] are designed to
cope with network congestions by combining RPS technology
[32] at the switch and CC scheme at the receiver. pHost [33]
and HOMA [34] aim to solve the last-hop congestion in DCNs,
but their effectiveness largely depends on the assumption that
most congestion occurs on the ToR downlinks. Though Aeolus
[8] helps handle the ”first-RTT” problem of receiver-driven

2235
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

0.2 0.4 0.6 0.8
Load

0

25

50

75

100
Av

er
ag

e
FC

T(
us

) DCQCN
TIMELY

HPCC
PACC

(a) 0-100KB average FCT

0.2 0.4 0.6 0.8
Load

0

100

200

300

400

99
th

 p
er

ce
nt

ile
 F

CT
(u

s)

DCQCN
TIMELY

HPCC
PACC

(b) 0-100KB tail FCT

0.2 0.4 0.6 0.8
Load

0

5

10

15

20

Av
er

ag
e

FC
T(

m
s)

DCQCN
TIMELY

HPCC
PACC

(c) >100KB average FCT

0.2 0.4 0.6 0.8
Load

0

25

50

75

100

99
th

 p
er

ce
nt

ile
 F

CT
(m

s)

DCQCN
TIMELY

HPCC
PACC

(d) >100KB tail FCT

Fig. 9: FCT breakdown with WebSearch traffic.

0.2 0.4 0.6 0.8
Load

0

30

60

90

120

Av
er

ag
e

FC
T(

us
) DCQCN

TIMELY
HPCC
PACC

(a) 0-100KB average FCT

0.2 0.4 0.6 0.8
Load

0

150

300

450

600
99

th
 p

er
ce

nt
ile

 F
CT

(u
s)

DCQCN
TIMELY

HPCC
PACC

(b) 0-100KB tail FCT

0.2 0.4 0.6 0.8
Load

0

1

2

3

4

Av
er

ag
e

FC
T(

m
s)

DCQCN
TIMELY

HPCC
PACC

(c) >100KB average FCT

0.2 0.4 0.6 0.8
Load

0

20

40

60

80

99
th

 p
er

ce
nt

ile
 F

CT
(m

s)

DCQCN
TIMELY

HPCC
PACC

(d) >100KB tail FCT

Fig. 10: FCT breakdown with FB Hadoop traffic.

solutions with non-trivial scheduled-packet-first design, issues
like core congestion remain pendent.

Flow Control Mechanism: Apart from PFC (buffer-based)
for RoCE, CBFC (Credit-Based Flow Control) is widely used
in the Infiniband fabrics [35]. The difference is that CBFC
periodically generates flow control information (time-based),
and the sender needs to determine the port status based on
the feedback signal. GFC [36] controls the port rate with fine
granularity to prevent diverse issues in PFC at scale. IRN
[37] and MELO [38] intend to prevent PFC from triggering
by reducing hardware-based selective packet retransmission.
However, the above solutions do not change the blocking
nature of PFC, and issues such as congestion proliferation and
unfairness still need further study.

VII. CONCLUSION

This paper proposes PACC, a switch-driven, PI controller-
based CC mechanism for RDMA-enabled DCNs. PACC is
inspired by the defects of the state-of-the-art CC algorithms
coping with some specific traffic patterns and the paradigm
shift from source-driven to core-driven. With the combination
design of precise computation, effective flow discrimination
and fair allocation at the switch, PACC can promptly perceive
in-network congestion and proactively piggybacks accurate
congestion signals to the corresponding sender. The results
of micro-benchmarks and large-scale simulations show that
PACC achieves good fairness, high throughput and low FCT
under multiple traffic patterns.

VIII. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their constructive comments. This work was partly funded by

the National Natural Science Foundation of China (NSFC)
(Grant No. 61872401 and 62132022) and the Fok Ying Tung
Education Foundation (Grant No. 171059).

APPENDIX A
DERIVATION OF STABLE VALUE OF α

Referring to the variation of α in DCQCN, the increase of
α is g(1−α) on receiving a CNP, and the decrease is gα every
τ ′ without getting a CNP. When α converges to a stable value,
the absolute change during a period of time P should equal 0.
Assuming that a CNP arrives every t′, by combining the two
we have P

t′ g(1−α) = gα(Pτ ′ − P
t′). Solving this equation and

we get α = τ ′

t′ .
Furthermore, if one rate increase phase covers l rate de-

crease events on average, then according to DCQCN we have:

Ti = l × t′ (1)

where Ti is the timer for additive rate increase.
Besides, since the sending rate decreases by α

2R on receiv-
ing a CNP, the average reduction of rate during Ti is:

∆R = l × α

2
R (2)

Combining (1), (2) and α we obtain:

α∗ =

√
τ ′

Ti
× 2∆R

R
(3)

Statistically, the value of ∆R
R during Ti can be approximated

as (RT−RC)/2
(RT+RC)/2 . With the expected value of RC (that is, RT

2),

we get α∗ =
√

2τ ′

3Ti
. We further take α∗ = 0.04714 as default

value using the typical (1, 300) group of (τ ′, Ti).

2236
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin and
C. Yan, “Speeding up distributed request-response workflows,” ACM
SIGCOMM Computer Communication Review, 43(4), 2013, pp.219-
230.

[2] ASSOCIATION, I. T. Supplement to InfiniBand TM Architecture Spec-
ification Volume 1 Release 1.2.1 Annex A17: RoCEv2 , 2014.

[3] 802.1Qbb - Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.html.

[4] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M.H. Yahia and M. Zhang, “Congestion Control for Large-
Scale RDMA Deployments,” SIGCOMM Comput. Commun. Rev., no.
4, 2015. [Online]. Available: https://doi.org/10.1145/2829988.2787484

[5] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, 2015, pp. 537–550.

[6] Y. Li, R. Miao, H.H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M.
Zhang, F. Kelly and M. Alizadeh, “HPCC: High Precision Congestion
Control,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 44–58.

[7] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye and M. Lipshteyn,
2016, “RDMA over commodity ethernet at scale”. in Proceedings of the
2016 ACM SIGCOMM Conference, 2016, pp. 202–215.

[8] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan and Y.
Wang, “Aeolus: A building block for proactive transport in datacenters,”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, archi-
tectures, and protocols for computer communication, 2020, pp. 422-434.

[9] P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster and T.
Edsall, “RoCC: robust congestion control for RDMA,” In Proceedings of
the 16th International Conference on emerging Networking EXperiments
and Technologies, 2020, pp. 17-30.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese and D. Walker,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, 44(3), 2014, pp.87-95.

[11] W. Cheng, K. Qian, W. Jiang, T. Zhang and F. Ren, “Re-architecting
congestion management in lossless Ethernet,” in 17th USENIX Sym-
posium on Networked Systems Design and Implementation, 2020, pp.
19-36.

[12] M. Al-Fares, A. Loukissas and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM computer communica-
tion review, vol. 38, no. 4, 2008, pp. 63–74.

[13] J. Woodruff, A.W. Moore and N. Zilberman, “Measuring burstiness
in data center applications,” in Proceedings of the 2019 Workshop on
Buffer Sizing, 2019, pp. 1-6.

[14] W. Bai, L. Chen, K. Chen and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in 13th USENIX Symposium on Networked
Systems Design and Implementation, 2016, pp. 537-549.

[15] J. Zhang, W. Bai and K. Chen, “Enabling ECN for datacenter networks
with RTT variations,” in Proceedings of the 15th International Confer-
ence on Emerging Networking Experiments And Technologies, 2019,
pp. 233-245.

[16] W. Bai, S. Hu, K. Chen, K. Tan and Y. Xiong, “One more config is
enough: Saving (DC) TCP for high-speed extremely shallow-buffered
datacenters,” IEEE/ACM Transactions on Networking, 2021, pp.489-
502.

[17] A. Roy, H. Zeng, J. Bagga, G. Porter and A.C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015,
pp. 123-137.

[18] ConnectXr-4 EN Adapter Card Single/Dual-port 100 Gigabit
Ethernet Adapter. https://www.mellanox.com/products/ethernet-
adapters/connectx-4-en.

[19] Gene Franklin, David Powell, and Abbas Emami-Naeini. 1995. Feed-
back Control of Dynamic Systems.

[20] Y. Zhu, M. Ghobadi, V. Misra and J. Padhye, “ECN or Delay: Lessons
Learnt from Analysis of DCQCN and TIMELY,” in Proceedings of the
12th International on Conference on emerging Networking EXperiments
and Technologies, 2016, pp. 313-327.

[21] M. Alizadeh, A. Kabbani, B. Atikoglu and B. Prabhakar, “Stability
analysis of QCN: the averaging principle,” in Proceedings of the
ACM SIGMETRICS joint international conference on Measurement and
modeling of computer systems, 2011, pp. 49-60.

[22] R. Pan, P. Natarajan, C. Piglione, M.S. Prabhu, V. Subramanian, F. Baker
and B. VerSteeg, “PIE: A lightweight control scheme to address the
bufferbloat problem,” in 2013 IEEE 14th international conference on
high performance switching and routing (HPSR), 2013, pp. 148-155.

[23] C.V. Hollot, V. Misra, D. Towsley and W.B. Gong, “A control theoretic
analysis of RED,” in Proceedings IEEE INFOCOM 2001. Conference
on Computer Communications. Twentieth Annual Joint Conference of
the IEEE Computer and Communications Society, 2001, pp. 1510-1519.

[24] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the ACM SIGCOMM 2010 Conference, 2010, pp. 63–74.

[25] G. Kumar, N. Dukkipati, K. Jang, H.M. Wassel, X. Wu, B. Montazeri, Y.
Wang, K. Springborn, C. Alfeld and M. Ryan., “Swift: Delay is simple
and effective for congestion control in the datacenter,” in Proceedings
of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and
protocols for computer communication, 2020, pp. 514–528.

[26] S. Liu, A. Ghalayini, M. Alizadeh, B. Prabhakar, M. Rosenblum and A.
Sivaraman, “Breaking the transience-equilibrium nexus: A new approach
to datacenter packet transport,” in NSDI, 2021, pp. 47–63.

[27] D. Katabi, M. Handley and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” in Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, 2002, pp. 89-102.

[28] N. Dukkipati, “RCP: Congestion control to make flows complete
quickly,” Ph.D. dissertation, PhD Thesis, Department of Electrical
Engineering, Stanford University, 2006.

[29] J. Zhang, F. Ren, R. Shu and P. Cheng, “TFC: Token flow control in data
center networks,” in Proceedings of the Eleventh European Conference
on Computer Systems, 2016, pp. 1-14.

[30] I. Cho, K. Jang and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, pp. 239-
252.

[31] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A.W. Moore, G. Antichi
and M. Wójcik, “Re-architecting datacenter networks and stacks for low
latency and high performance,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, 2017, pp. 29-42.

[32] A. Dixit, P. Prakash, Y.C. Hu and R.R. Kompella, “On the impact of
packet spraying in data center networks,” in 2013 Proceedings IEEE
INFOCOM, 2013, pp. 2130-2138.

[33] P.X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy and
S. Shenker, “phost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, 2015, pp. 1-
12.

[34] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A
receiver-driven low-latency transport protocol using network priorities,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 221–235.

[35] InfiniBand Trade Association. 2015. InfiniBand architecture
specification: release 1.3. (2015). https://www.infinibandta.org/ibta-
specifications-download/

[36] K. Qian, W. Cheng, T. Zhang and F. Ren, “Gentle flow control: avoiding
deadlock in lossless networks,” in Proceedings of the ACM Special
Interest Group on Data Communication, 2019, pp. 75-89.

[37] R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krishnamurthy, S.
Ratnasamy and S. Shenker, “Revisiting network support for RDMA,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 313-326.

[38] Y. Lu, G. Chen, Z. Ruan, W. Xiao, B. Li, J. Zhang, Y. Xiong, P.
Cheng and E. Chen, “Memory efficient loss recovery for hardware-
based transport in datacenter,” in Proceedings of the First Asia-Pacific
Workshop on Networking, 2017, pp. 22-28.

2237
Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 21,2023 at 10:41:57 UTC from IEEE Xplore. Restrictions apply.

